| L(s) = 1 | + 5.19i·7-s + (−1.5 + 0.866i)13-s + (−4 + 1.73i)19-s + (2.5 + 4.33i)25-s − 11·31-s − 12.1i·37-s + (10.5 + 6.06i)43-s − 20·49-s + (−6.5 − 11.2i)61-s + (2.5 + 4.33i)67-s + (−3.5 + 6.06i)73-s + (6.5 − 11.2i)79-s + (−4.5 − 7.79i)91-s + (−12 − 6.92i)97-s − 13·103-s + ⋯ |
| L(s) = 1 | + 1.96i·7-s + (−0.416 + 0.240i)13-s + (−0.917 + 0.397i)19-s + (0.5 + 0.866i)25-s − 1.97·31-s − 1.99i·37-s + (1.60 + 0.924i)43-s − 2.85·49-s + (−0.832 − 1.44i)61-s + (0.305 + 0.529i)67-s + (−0.409 + 0.709i)73-s + (0.731 − 1.26i)79-s + (−0.471 − 0.817i)91-s + (−1.21 − 0.703i)97-s − 1.28·103-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2736 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.999 - 0.0170i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2736 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.999 - 0.0170i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.7121164977\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.7121164977\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 19 | \( 1 + (4 - 1.73i)T \) |
| good | 5 | \( 1 + (-2.5 - 4.33i)T^{2} \) |
| 7 | \( 1 - 5.19iT - 7T^{2} \) |
| 11 | \( 1 - 11T^{2} \) |
| 13 | \( 1 + (1.5 - 0.866i)T + (6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + (-8.5 - 14.7i)T^{2} \) |
| 23 | \( 1 + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + 11T + 31T^{2} \) |
| 37 | \( 1 + 12.1iT - 37T^{2} \) |
| 41 | \( 1 + (20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-10.5 - 6.06i)T + (21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (6.5 + 11.2i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-2.5 - 4.33i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + (3.5 - 6.06i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (-6.5 + 11.2i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 - 83T^{2} \) |
| 89 | \( 1 + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (12 + 6.92i)T + (48.5 + 84.0i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.217018669627786751824778410137, −8.608041226420124875172981369640, −7.75217281028595077847371960168, −6.91612203668815252784796650502, −5.86049083056930808109416911038, −5.57963501553589169832975105342, −4.59671503821827805616811907869, −3.50233521887085029830290537441, −2.47416338839528205052242930634, −1.82453035333257578499902791404,
0.22428242819769975415970190403, 1.36326145107949271972607416332, 2.69222629766550002500080713043, 3.80086640690622082520208224821, 4.35435377704753008912613443546, 5.19376121310791619633665344114, 6.36747841830732286112121533392, 7.00191865631041658241799674209, 7.58818215180578250457858881005, 8.333455060210173564403718504570