Properties

Label 8-273e4-1.1-c1e4-0-11
Degree $8$
Conductor $5554571841$
Sign $1$
Analytic cond. $22.5818$
Root an. cond. $1.47645$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 8·5-s − 2·9-s + 8·11-s + 8·13-s + 7·16-s − 8·17-s − 12·19-s + 32·25-s − 8·29-s − 12·31-s + 12·37-s − 16·41-s − 16·45-s + 16·47-s + 10·49-s − 8·53-s + 64·55-s − 8·59-s + 64·65-s + 4·67-s + 12·73-s + 8·79-s + 56·80-s + 3·81-s − 8·83-s − 64·85-s + 8·89-s + ⋯
L(s)  = 1  + 3.57·5-s − 2/3·9-s + 2.41·11-s + 2.21·13-s + 7/4·16-s − 1.94·17-s − 2.75·19-s + 32/5·25-s − 1.48·29-s − 2.15·31-s + 1.97·37-s − 2.49·41-s − 2.38·45-s + 2.33·47-s + 10/7·49-s − 1.09·53-s + 8.62·55-s − 1.04·59-s + 7.93·65-s + 0.488·67-s + 1.40·73-s + 0.900·79-s + 6.26·80-s + 1/3·81-s − 0.878·83-s − 6.94·85-s + 0.847·89-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{4} \cdot 7^{4} \cdot 13^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{4} \cdot 7^{4} \cdot 13^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(3^{4} \cdot 7^{4} \cdot 13^{4}\)
Sign: $1$
Analytic conductor: \(22.5818\)
Root analytic conductor: \(1.47645\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 3^{4} \cdot 7^{4} \cdot 13^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(4.478795941\)
\(L(\frac12)\) \(\approx\) \(4.478795941\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3$C_2$ \( ( 1 + T^{2} )^{2} \)
7$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
13$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
good2$C_2^3$ \( 1 - 7 T^{4} + p^{4} T^{8} \)
5$C_2^2$ \( ( 1 - 4 T + 8 T^{2} - 4 p T^{3} + p^{2} T^{4} )^{2} \)
11$D_4\times C_2$ \( 1 - 8 T + 32 T^{2} - 56 T^{3} + 82 T^{4} - 56 p T^{5} + 32 p^{2} T^{6} - 8 p^{3} T^{7} + p^{4} T^{8} \)
17$C_2$ \( ( 1 + 2 T + p T^{2} )^{4} \)
19$D_4\times C_2$ \( 1 + 12 T + 72 T^{2} + 300 T^{3} + 1214 T^{4} + 300 p T^{5} + 72 p^{2} T^{6} + 12 p^{3} T^{7} + p^{4} T^{8} \)
23$D_4\times C_2$ \( 1 - 12 T^{2} - 442 T^{4} - 12 p^{2} T^{6} + p^{4} T^{8} \)
29$D_{4}$ \( ( 1 + 4 T + 38 T^{2} + 4 p T^{3} + p^{2} T^{4} )^{2} \)
31$D_4\times C_2$ \( 1 + 12 T + 72 T^{2} + 444 T^{3} + 2702 T^{4} + 444 p T^{5} + 72 p^{2} T^{6} + 12 p^{3} T^{7} + p^{4} T^{8} \)
37$D_4\times C_2$ \( 1 - 12 T + 72 T^{2} - 84 T^{3} - 802 T^{4} - 84 p T^{5} + 72 p^{2} T^{6} - 12 p^{3} T^{7} + p^{4} T^{8} \)
41$C_2^2$ \( ( 1 + 8 T + 32 T^{2} + 8 p T^{3} + p^{2} T^{4} )^{2} \)
43$D_4\times C_2$ \( 1 - 116 T^{2} + 6678 T^{4} - 116 p^{2} T^{6} + p^{4} T^{8} \)
47$D_4\times C_2$ \( 1 - 16 T + 128 T^{2} - 1072 T^{3} + 8578 T^{4} - 1072 p T^{5} + 128 p^{2} T^{6} - 16 p^{3} T^{7} + p^{4} T^{8} \)
53$D_{4}$ \( ( 1 + 4 T + 14 T^{2} + 4 p T^{3} + p^{2} T^{4} )^{2} \)
59$D_4\times C_2$ \( 1 + 8 T + 32 T^{2} + 440 T^{3} + 6034 T^{4} + 440 p T^{5} + 32 p^{2} T^{6} + 8 p^{3} T^{7} + p^{4} T^{8} \)
61$C_2$ \( ( 1 - 12 T + p T^{2} )^{2}( 1 + 12 T + p T^{2} )^{2} \)
67$D_4\times C_2$ \( 1 - 4 T + 8 T^{2} + 156 T^{3} - 8194 T^{4} + 156 p T^{5} + 8 p^{2} T^{6} - 4 p^{3} T^{7} + p^{4} T^{8} \)
71$C_2^3$ \( 1 + 6818 T^{4} + p^{4} T^{8} \)
73$D_4\times C_2$ \( 1 - 12 T + 72 T^{2} - 516 T^{3} + 2798 T^{4} - 516 p T^{5} + 72 p^{2} T^{6} - 12 p^{3} T^{7} + p^{4} T^{8} \)
79$D_{4}$ \( ( 1 - 4 T + 138 T^{2} - 4 p T^{3} + p^{2} T^{4} )^{2} \)
83$D_4\times C_2$ \( 1 + 8 T + 32 T^{2} + 632 T^{3} + 12466 T^{4} + 632 p T^{5} + 32 p^{2} T^{6} + 8 p^{3} T^{7} + p^{4} T^{8} \)
89$C_2^2$ \( ( 1 - 4 T + 8 T^{2} - 4 p T^{3} + p^{2} T^{4} )^{2} \)
97$D_4\times C_2$ \( 1 - 12 T + 72 T^{2} - 804 T^{3} + 8078 T^{4} - 804 p T^{5} + 72 p^{2} T^{6} - 12 p^{3} T^{7} + p^{4} T^{8} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.752204616803414073277977067793, −8.671268309925956163172455826375, −8.240001933471805795657655140962, −8.206372225224573619202379033956, −7.62031941751579119384226152799, −7.28689479760363063113275329645, −6.65106633912813387570766308701, −6.56945405687456100145596481715, −6.50603376781577016233424553217, −6.45526391812804286070420999543, −5.94083086041956919488307324277, −5.76977898245887487808557883787, −5.60823923314576919235415092196, −5.50422801341887080606689785023, −4.99964617995686551287702773918, −4.44096407113185634962311689770, −3.99929676968126252418787321044, −3.95692633474812991662861989877, −3.68541019113202767043097232560, −3.12835913266333210364713736769, −2.50355439749296610744771599728, −2.17541129203978597405439983548, −1.88392866495815513188344540944, −1.56181998106492146980760416093, −1.22317055223549272782744152085, 1.22317055223549272782744152085, 1.56181998106492146980760416093, 1.88392866495815513188344540944, 2.17541129203978597405439983548, 2.50355439749296610744771599728, 3.12835913266333210364713736769, 3.68541019113202767043097232560, 3.95692633474812991662861989877, 3.99929676968126252418787321044, 4.44096407113185634962311689770, 4.99964617995686551287702773918, 5.50422801341887080606689785023, 5.60823923314576919235415092196, 5.76977898245887487808557883787, 5.94083086041956919488307324277, 6.45526391812804286070420999543, 6.50603376781577016233424553217, 6.56945405687456100145596481715, 6.65106633912813387570766308701, 7.28689479760363063113275329645, 7.62031941751579119384226152799, 8.206372225224573619202379033956, 8.240001933471805795657655140962, 8.671268309925956163172455826375, 8.752204616803414073277977067793

Graph of the $Z$-function along the critical line