Properties

Label 8-273e4-1.1-c1e4-0-0
Degree $8$
Conductor $5554571841$
Sign $1$
Analytic cond. $22.5818$
Root an. cond. $1.47645$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·5-s − 4·7-s − 2·9-s + 4·11-s + 8·13-s − 8·16-s − 8·17-s + 8·19-s + 8·25-s + 20·29-s − 16·31-s + 16·35-s − 8·37-s − 16·41-s + 8·45-s − 20·47-s + 8·49-s − 4·53-s − 16·55-s − 8·59-s + 8·63-s − 32·65-s + 24·71-s + 16·73-s − 16·77-s − 20·79-s + 32·80-s + ⋯
L(s)  = 1  − 1.78·5-s − 1.51·7-s − 2/3·9-s + 1.20·11-s + 2.21·13-s − 2·16-s − 1.94·17-s + 1.83·19-s + 8/5·25-s + 3.71·29-s − 2.87·31-s + 2.70·35-s − 1.31·37-s − 2.49·41-s + 1.19·45-s − 2.91·47-s + 8/7·49-s − 0.549·53-s − 2.15·55-s − 1.04·59-s + 1.00·63-s − 3.96·65-s + 2.84·71-s + 1.87·73-s − 1.82·77-s − 2.25·79-s + 3.57·80-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{4} \cdot 7^{4} \cdot 13^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{4} \cdot 7^{4} \cdot 13^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(3^{4} \cdot 7^{4} \cdot 13^{4}\)
Sign: $1$
Analytic conductor: \(22.5818\)
Root analytic conductor: \(1.47645\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 3^{4} \cdot 7^{4} \cdot 13^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(0.2765438637\)
\(L(\frac12)\) \(\approx\) \(0.2765438637\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3$C_2$ \( ( 1 + T^{2} )^{2} \)
7$C_2^2$ \( 1 + 4 T + 8 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
13$C_2^2$ \( 1 - 8 T + 32 T^{2} - 8 p T^{3} + p^{2} T^{4} \)
good2$C_2$ \( ( 1 - p T + p T^{2} )^{2}( 1 + p T + p T^{2} )^{2} \)
5$D_4\times C_2$ \( 1 + 4 T + 8 T^{2} + 8 T^{3} - T^{4} + 8 p T^{5} + 8 p^{2} T^{6} + 4 p^{3} T^{7} + p^{4} T^{8} \)
11$C_2$$\times$$C_2^2$ \( ( 1 - 2 T + p T^{2} )^{2}( 1 - 18 T^{2} + p^{2} T^{4} ) \)
17$D_{4}$ \( ( 1 + 4 T + 28 T^{2} + 4 p T^{3} + p^{2} T^{4} )^{2} \)
19$D_4\times C_2$ \( 1 - 8 T + 32 T^{2} - 176 T^{3} + 959 T^{4} - 176 p T^{5} + 32 p^{2} T^{6} - 8 p^{3} T^{7} + p^{4} T^{8} \)
23$D_4\times C_2$ \( 1 - 70 T^{2} + 2243 T^{4} - 70 p^{2} T^{6} + p^{4} T^{8} \)
29$D_{4}$ \( ( 1 - 10 T + 73 T^{2} - 10 p T^{3} + p^{2} T^{4} )^{2} \)
31$D_4\times C_2$ \( 1 + 16 T + 128 T^{2} + 928 T^{3} + 5999 T^{4} + 928 p T^{5} + 128 p^{2} T^{6} + 16 p^{3} T^{7} + p^{4} T^{8} \)
37$D_4\times C_2$ \( 1 + 8 T + 32 T^{2} - 280 T^{3} - 2734 T^{4} - 280 p T^{5} + 32 p^{2} T^{6} + 8 p^{3} T^{7} + p^{4} T^{8} \)
41$D_4\times C_2$ \( 1 + 16 T + 128 T^{2} + 848 T^{3} + 5474 T^{4} + 848 p T^{5} + 128 p^{2} T^{6} + 16 p^{3} T^{7} + p^{4} T^{8} \)
43$D_4\times C_2$ \( 1 - 90 T^{2} + 5563 T^{4} - 90 p^{2} T^{6} + p^{4} T^{8} \)
47$D_4\times C_2$ \( 1 + 20 T + 200 T^{2} + 1840 T^{3} + 14903 T^{4} + 1840 p T^{5} + 200 p^{2} T^{6} + 20 p^{3} T^{7} + p^{4} T^{8} \)
53$D_{4}$ \( ( 1 + 2 T + 97 T^{2} + 2 p T^{3} + p^{2} T^{4} )^{2} \)
59$D_4\times C_2$ \( 1 + 8 T + 32 T^{2} - 104 T^{3} - 4846 T^{4} - 104 p T^{5} + 32 p^{2} T^{6} + 8 p^{3} T^{7} + p^{4} T^{8} \)
61$C_2^2$ \( ( 1 - 112 T^{2} + p^{2} T^{4} )^{2} \)
67$C_2^3$ \( 1 - 6062 T^{4} + p^{4} T^{8} \)
71$C_2^2$ \( ( 1 - 12 T + 72 T^{2} - 12 p T^{3} + p^{2} T^{4} )^{2} \)
73$D_4\times C_2$ \( 1 - 16 T + 128 T^{2} - 1600 T^{3} + 19271 T^{4} - 1600 p T^{5} + 128 p^{2} T^{6} - 16 p^{3} T^{7} + p^{4} T^{8} \)
79$D_{4}$ \( ( 1 + 10 T + 143 T^{2} + 10 p T^{3} + p^{2} T^{4} )^{2} \)
83$D_4\times C_2$ \( 1 + 20 T + 200 T^{2} + 2560 T^{3} + 30743 T^{4} + 2560 p T^{5} + 200 p^{2} T^{6} + 20 p^{3} T^{7} + p^{4} T^{8} \)
89$D_4\times C_2$ \( 1 + 28 T + 392 T^{2} + 5096 T^{3} + 57599 T^{4} + 5096 p T^{5} + 392 p^{2} T^{6} + 28 p^{3} T^{7} + p^{4} T^{8} \)
97$D_4\times C_2$ \( 1 + 8 T + 32 T^{2} + 800 T^{3} + 19991 T^{4} + 800 p T^{5} + 32 p^{2} T^{6} + 8 p^{3} T^{7} + p^{4} T^{8} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.653160870567070452921989276919, −8.530059442698811856848207744950, −8.317289832908387279792039431917, −7.894150504156955864366333265337, −7.82774656883646789471256226219, −7.13772476495172290886558007442, −6.87908868386057324851750849332, −6.82084429060559135895805656085, −6.71210105696702462375622295506, −6.46344629272368819701451836386, −6.26632381226452616925485420693, −5.83391123504976754757562748370, −5.30752744628342674365248933365, −5.05927466064118876277340027677, −4.85540221144306396035516576361, −4.42305808868078945862088202919, −3.96380462196344232086535265518, −3.92598524329500373726504983588, −3.46691423296353433533872079049, −3.35960043393467267876393293161, −2.90428594755749102083070976201, −2.68963071339564813570180355042, −1.69721431646154716020872007460, −1.45362398774215730435941109604, −0.26936776768805653201568045932, 0.26936776768805653201568045932, 1.45362398774215730435941109604, 1.69721431646154716020872007460, 2.68963071339564813570180355042, 2.90428594755749102083070976201, 3.35960043393467267876393293161, 3.46691423296353433533872079049, 3.92598524329500373726504983588, 3.96380462196344232086535265518, 4.42305808868078945862088202919, 4.85540221144306396035516576361, 5.05927466064118876277340027677, 5.30752744628342674365248933365, 5.83391123504976754757562748370, 6.26632381226452616925485420693, 6.46344629272368819701451836386, 6.71210105696702462375622295506, 6.82084429060559135895805656085, 6.87908868386057324851750849332, 7.13772476495172290886558007442, 7.82774656883646789471256226219, 7.894150504156955864366333265337, 8.317289832908387279792039431917, 8.530059442698811856848207744950, 8.653160870567070452921989276919

Graph of the $Z$-function along the critical line