Properties

Label 8-273e4-1.1-c1e4-0-1
Degree $8$
Conductor $5554571841$
Sign $1$
Analytic cond. $22.5818$
Root an. cond. $1.47645$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·7-s − 3·9-s + 4·16-s + 2·19-s − 8·31-s − 20·37-s − 11·49-s − 6·63-s + 32·67-s − 34·73-s + 28·97-s + 66·103-s − 4·109-s + 8·112-s + 127-s + 131-s + 4·133-s + 137-s + 139-s − 12·144-s + 149-s + 151-s + 157-s + 163-s + 167-s − 23·169-s − 6·171-s + ⋯
L(s)  = 1  + 0.755·7-s − 9-s + 16-s + 0.458·19-s − 1.43·31-s − 3.28·37-s − 1.57·49-s − 0.755·63-s + 3.90·67-s − 3.97·73-s + 2.84·97-s + 6.50·103-s − 0.383·109-s + 0.755·112-s + 0.0887·127-s + 0.0873·131-s + 0.346·133-s + 0.0854·137-s + 0.0848·139-s − 144-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 1.76·169-s − 0.458·171-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{4} \cdot 7^{4} \cdot 13^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{4} \cdot 7^{4} \cdot 13^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(3^{4} \cdot 7^{4} \cdot 13^{4}\)
Sign: $1$
Analytic conductor: \(22.5818\)
Root analytic conductor: \(1.47645\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 3^{4} \cdot 7^{4} \cdot 13^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(1.510824552\)
\(L(\frac12)\) \(\approx\) \(1.510824552\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3$C_2^2$ \( 1 + p T^{2} + p^{2} T^{4} \)
7$C_2$ \( ( 1 - T + p T^{2} )^{2} \)
13$C_2^2$ \( 1 + 23 T^{2} + p^{2} T^{4} \)
good2$C_2^2$$\times$$C_2^2$ \( ( 1 - p T + p T^{2} - p^{2} T^{3} + p^{2} T^{4} )( 1 + p T + p T^{2} + p^{2} T^{3} + p^{2} T^{4} ) \)
5$C_2^3$ \( 1 - p^{2} T^{4} + p^{4} T^{8} \)
11$C_2^3$ \( 1 - p^{2} T^{4} + p^{4} T^{8} \)
17$C_2^2$ \( ( 1 - p T^{2} + p^{2} T^{4} )^{2} \)
19$C_2$$\times$$C_2^2$ \( ( 1 - T + p T^{2} )^{2}( 1 + 26 T^{2} + p^{2} T^{4} ) \)
23$C_2^2$ \( ( 1 - p T^{2} + p^{2} T^{4} )^{2} \)
29$C_2$ \( ( 1 - p T^{2} )^{4} \)
31$C_2$$\times$$C_2^2$ \( ( 1 + 4 T + p T^{2} )^{2}( 1 + 59 T^{2} + p^{2} T^{4} ) \)
37$C_2$$\times$$C_2^2$ \( ( 1 + 10 T + p T^{2} )^{2}( 1 + 47 T^{2} + p^{2} T^{4} ) \)
41$C_2^2$ \( ( 1 + p^{2} T^{4} )^{2} \)
43$C_2$ \( ( 1 - 5 T + p T^{2} )^{2}( 1 + 5 T + p T^{2} )^{2} \)
47$C_2^3$ \( 1 - p^{2} T^{4} + p^{4} T^{8} \)
53$C_2^2$ \( ( 1 + p T^{2} + p^{2} T^{4} )^{2} \)
59$C_2^3$ \( 1 - p^{2} T^{4} + p^{4} T^{8} \)
61$C_2^2$$\times$$C_2^2$ \( ( 1 - 121 T^{2} + p^{2} T^{4} )( 1 + 47 T^{2} + p^{2} T^{4} ) \)
67$C_2$$\times$$C_2^2$ \( ( 1 - 16 T + p T^{2} )^{2}( 1 - 109 T^{2} + p^{2} T^{4} ) \)
71$C_2^2$ \( ( 1 + p^{2} T^{4} )^{2} \)
73$C_2$$\times$$C_2^2$ \( ( 1 + 17 T + p T^{2} )^{2}( 1 - 46 T^{2} + p^{2} T^{4} ) \)
79$C_2^2$$\times$$C_2^2$ \( ( 1 - 142 T^{2} + p^{2} T^{4} )( 1 + 131 T^{2} + p^{2} T^{4} ) \)
83$C_2^2$ \( ( 1 + p^{2} T^{4} )^{2} \)
89$C_2^3$ \( 1 - p^{2} T^{4} + p^{4} T^{8} \)
97$C_2$$\times$$C_2^2$ \( ( 1 - 14 T + p T^{2} )^{2}( 1 + 2 T^{2} + p^{2} T^{4} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.666686229138527669370415668387, −8.353078646265069113477089438741, −8.253363710990125608288182104209, −7.964564868613916924223372206597, −7.67632174342558231133387800131, −7.31777463497987380024673549703, −7.13188597114265530636648900114, −7.04849407572659673790749751181, −6.53858930006306273976638313649, −6.20667821347275736761351383920, −5.97467809956692366007062704781, −5.73926421859207841314585106419, −5.31382518620491011752720717662, −5.16593297280871508394435663282, −5.03176937330993522126408462253, −4.58114025526944434769903628398, −4.25880083933450224478574868539, −3.66550402670282311520218583431, −3.46092025716659151253838750154, −3.27393135133182694244412332112, −2.96980371316808273796371616269, −2.20513457695094955499927868300, −1.86332951529759131415440609928, −1.61023001958516016286348661855, −0.61155138404384136126541772739, 0.61155138404384136126541772739, 1.61023001958516016286348661855, 1.86332951529759131415440609928, 2.20513457695094955499927868300, 2.96980371316808273796371616269, 3.27393135133182694244412332112, 3.46092025716659151253838750154, 3.66550402670282311520218583431, 4.25880083933450224478574868539, 4.58114025526944434769903628398, 5.03176937330993522126408462253, 5.16593297280871508394435663282, 5.31382518620491011752720717662, 5.73926421859207841314585106419, 5.97467809956692366007062704781, 6.20667821347275736761351383920, 6.53858930006306273976638313649, 7.04849407572659673790749751181, 7.13188597114265530636648900114, 7.31777463497987380024673549703, 7.67632174342558231133387800131, 7.964564868613916924223372206597, 8.253363710990125608288182104209, 8.353078646265069113477089438741, 8.666686229138527669370415668387

Graph of the $Z$-function along the critical line