Properties

Label 4-273e2-1.1-c1e2-0-11
Degree $4$
Conductor $74529$
Sign $1$
Analytic cond. $4.75203$
Root an. cond. $1.47645$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·3-s + 3·9-s + 4·13-s − 4·16-s − 4·17-s − 2·23-s + 25-s + 4·27-s + 10·29-s + 8·39-s + 18·43-s − 8·48-s − 49-s − 8·51-s + 18·53-s − 16·61-s − 4·69-s + 2·75-s + 30·79-s + 5·81-s + 20·87-s − 16·101-s − 32·103-s − 24·107-s − 42·113-s + 12·117-s + 22·121-s + ⋯
L(s)  = 1  + 1.15·3-s + 9-s + 1.10·13-s − 16-s − 0.970·17-s − 0.417·23-s + 1/5·25-s + 0.769·27-s + 1.85·29-s + 1.28·39-s + 2.74·43-s − 1.15·48-s − 1/7·49-s − 1.12·51-s + 2.47·53-s − 2.04·61-s − 0.481·69-s + 0.230·75-s + 3.37·79-s + 5/9·81-s + 2.14·87-s − 1.59·101-s − 3.15·103-s − 2.32·107-s − 3.95·113-s + 1.10·117-s + 2·121-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 74529 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 74529 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(74529\)    =    \(3^{2} \cdot 7^{2} \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(4.75203\)
Root analytic conductor: \(1.47645\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 74529,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.247117341\)
\(L(\frac12)\) \(\approx\) \(2.247117341\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3$C_1$ \( ( 1 - T )^{2} \)
7$C_2$ \( 1 + T^{2} \)
13$C_2$ \( 1 - 4 T + p T^{2} \)
good2$C_2$ \( ( 1 - p T + p T^{2} )( 1 + p T + p T^{2} ) \)
5$C_2^2$ \( 1 - T^{2} + p^{2} T^{4} \)
11$C_2$ \( ( 1 - p T^{2} )^{2} \)
17$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
19$C_2^2$ \( 1 - 37 T^{2} + p^{2} T^{4} \)
23$C_2$ \( ( 1 + T + p T^{2} )^{2} \)
29$C_2$ \( ( 1 - 5 T + p T^{2} )^{2} \)
31$C_2^2$ \( 1 - 37 T^{2} + p^{2} T^{4} \)
37$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
41$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
43$C_2$ \( ( 1 - 9 T + p T^{2} )^{2} \)
47$C_2^2$ \( 1 - 45 T^{2} + p^{2} T^{4} \)
53$C_2$ \( ( 1 - 9 T + p T^{2} )^{2} \)
59$C_2^2$ \( 1 - 102 T^{2} + p^{2} T^{4} \)
61$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
67$C_2^2$ \( 1 - 130 T^{2} + p^{2} T^{4} \)
71$C_2$ \( ( 1 - p T^{2} )^{2} \)
73$C_2^2$ \( 1 - 65 T^{2} + p^{2} T^{4} \)
79$C_2$ \( ( 1 - 15 T + p T^{2} )^{2} \)
83$C_2^2$ \( 1 - 85 T^{2} + p^{2} T^{4} \)
89$C_2^2$ \( 1 - 97 T^{2} + p^{2} T^{4} \)
97$C_2^2$ \( 1 - 25 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.53711924879391049248068412288, −11.75942999023472771407128015184, −11.00019349193892584344335973713, −10.65135977649544478028872182113, −10.44237773289844884506708290251, −9.495803727925246431264251006851, −9.091325888207403476248922949636, −9.012452303660284311020256051581, −8.132154481969938936747522698136, −8.106523840292540468554590842384, −7.29523439370080668495912550963, −6.60369478835799314994114036829, −6.47642883402419071704485276541, −5.58698705029836725130809403607, −4.81595767110589909730428898467, −4.00210781752750486635416871863, −3.98036133172615340916797878280, −2.65376140931775816657558005927, −2.51396560601296405833713333615, −1.25303551678348609773086333816, 1.25303551678348609773086333816, 2.51396560601296405833713333615, 2.65376140931775816657558005927, 3.98036133172615340916797878280, 4.00210781752750486635416871863, 4.81595767110589909730428898467, 5.58698705029836725130809403607, 6.47642883402419071704485276541, 6.60369478835799314994114036829, 7.29523439370080668495912550963, 8.106523840292540468554590842384, 8.132154481969938936747522698136, 9.012452303660284311020256051581, 9.091325888207403476248922949636, 9.495803727925246431264251006851, 10.44237773289844884506708290251, 10.65135977649544478028872182113, 11.00019349193892584344335973713, 11.75942999023472771407128015184, 12.53711924879391049248068412288

Graph of the $Z$-function along the critical line