L(s) = 1 | + 3-s + 5-s + 5·7-s − 9-s + 2·11-s + 15-s + 3·17-s − 4·19-s + 5·21-s + 2·23-s − 5·25-s − 2·29-s + 2·31-s + 2·33-s + 5·35-s − 15·37-s − 16·41-s + 15·43-s − 45-s − 11·47-s + 9·49-s + 3·51-s + 8·53-s + 2·55-s − 4·57-s + 20·59-s + 14·61-s + ⋯ |
L(s) = 1 | + 0.577·3-s + 0.447·5-s + 1.88·7-s − 1/3·9-s + 0.603·11-s + 0.258·15-s + 0.727·17-s − 0.917·19-s + 1.09·21-s + 0.417·23-s − 25-s − 0.371·29-s + 0.359·31-s + 0.348·33-s + 0.845·35-s − 2.46·37-s − 2.49·41-s + 2.28·43-s − 0.149·45-s − 1.60·47-s + 9/7·49-s + 0.420·51-s + 1.09·53-s + 0.269·55-s − 0.529·57-s + 2.60·59-s + 1.79·61-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 7311616 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7311616 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(4.499799204\) |
\(L(\frac12)\) |
\(\approx\) |
\(4.499799204\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.696771018842542207263351075491, −8.628896311861460463039910894848, −8.312877077933587342902511661992, −8.160674307231356457011931974376, −7.55623501111772194368621232307, −7.17257939692592664729694541977, −6.76170208878051368246338961100, −6.50716171125282464990685070156, −5.78926185900397933972520926536, −5.45787228100373829980409662941, −5.03119289509308449322608657382, −5.00465887704030808227982046069, −4.01441604485184811788092879351, −4.00027731792265870510206060330, −3.44526309235531808256193394657, −2.82555382675307408894006694176, −2.15359402162901983017170993996, −1.90127515572272056260445980288, −1.48149610303832195097425302985, −0.66267037626513989326510550280,
0.66267037626513989326510550280, 1.48149610303832195097425302985, 1.90127515572272056260445980288, 2.15359402162901983017170993996, 2.82555382675307408894006694176, 3.44526309235531808256193394657, 4.00027731792265870510206060330, 4.01441604485184811788092879351, 5.00465887704030808227982046069, 5.03119289509308449322608657382, 5.45787228100373829980409662941, 5.78926185900397933972520926536, 6.50716171125282464990685070156, 6.76170208878051368246338961100, 7.17257939692592664729694541977, 7.55623501111772194368621232307, 8.160674307231356457011931974376, 8.312877077933587342902511661992, 8.628896311861460463039910894848, 8.696771018842542207263351075491