Properties

Label 8-2700e4-1.1-c1e4-0-10
Degree $8$
Conductor $5.314\times 10^{13}$
Sign $1$
Analytic cond. $216054.$
Root an. cond. $4.64323$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 6·11-s + 16·19-s − 6·29-s − 10·31-s + 6·41-s − 13·49-s + 6·59-s + 26·61-s + 48·71-s + 22·79-s + 24·89-s + 30·101-s − 8·109-s + 31·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 25·169-s + 173-s + 179-s + 181-s + ⋯
L(s)  = 1  + 1.80·11-s + 3.67·19-s − 1.11·29-s − 1.79·31-s + 0.937·41-s − 1.85·49-s + 0.781·59-s + 3.32·61-s + 5.69·71-s + 2.47·79-s + 2.54·89-s + 2.98·101-s − 0.766·109-s + 2.81·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 1.92·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{8} \cdot 3^{12} \cdot 5^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{8} \cdot 3^{12} \cdot 5^{8}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{8} \cdot 3^{12} \cdot 5^{8}\)
Sign: $1$
Analytic conductor: \(216054.\)
Root analytic conductor: \(4.64323\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{8} \cdot 3^{12} \cdot 5^{8} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(9.597639101\)
\(L(\frac12)\) \(\approx\) \(9.597639101\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
good7$C_2^2$$\times$$C_2^2$ \( ( 1 + 2 T^{2} + p^{2} T^{4} )( 1 + 11 T^{2} + p^{2} T^{4} ) \)
11$C_2^2$ \( ( 1 - 3 T - 2 T^{2} - 3 p T^{3} + p^{2} T^{4} )^{2} \)
13$C_2^3$ \( 1 + 25 T^{2} + 456 T^{4} + 25 p^{2} T^{6} + p^{4} T^{8} \)
17$C_2^2$ \( ( 1 + 2 T^{2} + p^{2} T^{4} )^{2} \)
19$C_2$ \( ( 1 - 4 T + p T^{2} )^{4} \)
23$C_2^3$ \( 1 + 37 T^{2} + 840 T^{4} + 37 p^{2} T^{6} + p^{4} T^{8} \)
29$C_2^2$ \( ( 1 + 3 T - 20 T^{2} + 3 p T^{3} + p^{2} T^{4} )^{2} \)
31$C_2^2$ \( ( 1 + 5 T - 6 T^{2} + 5 p T^{3} + p^{2} T^{4} )^{2} \)
37$C_2$ \( ( 1 - 12 T + p T^{2} )^{2}( 1 + 12 T + p T^{2} )^{2} \)
41$C_2^2$ \( ( 1 - 3 T - 32 T^{2} - 3 p T^{3} + p^{2} T^{4} )^{2} \)
43$C_2^3$ \( 1 + 85 T^{2} + 5376 T^{4} + 85 p^{2} T^{6} + p^{4} T^{8} \)
47$C_2^3$ \( 1 + 13 T^{2} - 2040 T^{4} + 13 p^{2} T^{6} + p^{4} T^{8} \)
53$C_2^2$ \( ( 1 - 70 T^{2} + p^{2} T^{4} )^{2} \)
59$C_2^2$ \( ( 1 - 3 T - 50 T^{2} - 3 p T^{3} + p^{2} T^{4} )^{2} \)
61$C_2$ \( ( 1 - 14 T + p T^{2} )^{2}( 1 + T + p T^{2} )^{2} \)
67$C_2^3$ \( 1 + 85 T^{2} + 2736 T^{4} + 85 p^{2} T^{6} + p^{4} T^{8} \)
71$C_2$ \( ( 1 - 12 T + p T^{2} )^{4} \)
73$C_2^2$ \( ( 1 - 46 T^{2} + p^{2} T^{4} )^{2} \)
79$C_2^2$ \( ( 1 - 11 T + 42 T^{2} - 11 p T^{3} + p^{2} T^{4} )^{2} \)
83$C_2^3$ \( 1 + 85 T^{2} + 336 T^{4} + 85 p^{2} T^{6} + p^{4} T^{8} \)
89$C_2$ \( ( 1 - 6 T + p T^{2} )^{4} \)
97$C_2^3$ \( 1 + 73 T^{2} - 4080 T^{4} + 73 p^{2} T^{6} + p^{4} T^{8} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.41472476230803739521172811380, −5.98416561706554884011410879445, −5.86411383093590383064641348072, −5.60246734878673315859947787575, −5.48720345880660625204335646196, −5.08934890088221056649849747497, −5.02705321673935425612384728759, −4.95650211689555763466934952526, −4.91466259543318138811294963548, −4.18171369751995756842290522315, −4.08586333565605284053376950274, −3.86060785697906169053930440476, −3.75643694598376137151292525559, −3.47727373942673935744038169595, −3.28155668170697041361954270769, −3.12368535933943603941275638930, −3.06484990658246662407741500861, −2.23674300011553588499729938641, −2.14407016360217130256172821750, −2.03067928753312742002325838902, −1.86912232728428613208869045672, −1.26643466597662421878467426598, −0.883927912402901540319852003873, −0.798899682111628645875452865526, −0.61676624764186247690829387859, 0.61676624764186247690829387859, 0.798899682111628645875452865526, 0.883927912402901540319852003873, 1.26643466597662421878467426598, 1.86912232728428613208869045672, 2.03067928753312742002325838902, 2.14407016360217130256172821750, 2.23674300011553588499729938641, 3.06484990658246662407741500861, 3.12368535933943603941275638930, 3.28155668170697041361954270769, 3.47727373942673935744038169595, 3.75643694598376137151292525559, 3.86060785697906169053930440476, 4.08586333565605284053376950274, 4.18171369751995756842290522315, 4.91466259543318138811294963548, 4.95650211689555763466934952526, 5.02705321673935425612384728759, 5.08934890088221056649849747497, 5.48720345880660625204335646196, 5.60246734878673315859947787575, 5.86411383093590383064641348072, 5.98416561706554884011410879445, 6.41472476230803739521172811380

Graph of the $Z$-function along the critical line