Properties

Label 8-270e4-1.1-c2e4-0-6
Degree $8$
Conductor $5314410000$
Sign $1$
Analytic cond. $2929.51$
Root an. cond. $2.71237$
Motivic weight $2$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·4-s + 12·16-s + 84·19-s + 160·31-s + 146·49-s − 388·61-s + 32·64-s + 336·76-s − 468·79-s + 32·109-s + 480·121-s + 640·124-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 514·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + ⋯
L(s)  = 1  + 4-s + 3/4·16-s + 4.42·19-s + 5.16·31-s + 2.97·49-s − 6.36·61-s + 1/2·64-s + 4.42·76-s − 5.92·79-s + 0.293·109-s + 3.96·121-s + 5.16·124-s + 0.00787·127-s + 0.00763·131-s + 0.00729·137-s + 0.00719·139-s + 0.00671·149-s + 0.00662·151-s + 0.00636·157-s + 0.00613·163-s + 0.00598·167-s + 3.04·169-s + 0.00578·173-s + 0.00558·179-s + 0.00552·181-s + 0.00523·191-s + 0.00518·193-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 3^{12} \cdot 5^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(3-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 3^{12} \cdot 5^{4}\right)^{s/2} \, \Gamma_{\C}(s+1)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{4} \cdot 3^{12} \cdot 5^{4}\)
Sign: $1$
Analytic conductor: \(2929.51\)
Root analytic conductor: \(2.71237\)
Motivic weight: \(2\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{4} \cdot 3^{12} \cdot 5^{4} ,\ ( \ : 1, 1, 1, 1 ),\ 1 )\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(6.428901473\)
\(L(\frac12)\) \(\approx\) \(6.428901473\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( ( 1 - p T^{2} )^{2} \)
3 \( 1 \)
5$C_2^2$ \( 1 + p^{4} T^{4} \)
good7$C_2^2$ \( ( 1 - 73 T^{2} + p^{4} T^{4} )^{2} \)
11$C_2^2$ \( ( 1 - 240 T^{2} + p^{4} T^{4} )^{2} \)
13$C_2^2$ \( ( 1 - 257 T^{2} + p^{4} T^{4} )^{2} \)
17$C_2^2$ \( ( 1 + 450 T^{2} + p^{4} T^{4} )^{2} \)
19$C_2$ \( ( 1 - 21 T + p^{2} T^{2} )^{4} \)
23$C_2^2$ \( ( 1 + 1056 T^{2} + p^{4} T^{4} )^{2} \)
29$C_2^2$ \( ( 1 - 224 T^{2} + p^{4} T^{4} )^{2} \)
31$C_2$ \( ( 1 - 40 T + p^{2} T^{2} )^{4} \)
37$C_2^2$ \( ( 1 - 2113 T^{2} + p^{4} T^{4} )^{2} \)
41$C_2^2$ \( ( 1 - 624 T^{2} + p^{4} T^{4} )^{2} \)
43$C_2^2$ \( ( 1 + 398 T^{2} + p^{4} T^{4} )^{2} \)
47$C_2^2$ \( ( 1 + 3906 T^{2} + p^{4} T^{4} )^{2} \)
53$C_2^2$ \( ( 1 + 416 T^{2} + p^{4} T^{4} )^{2} \)
59$C_2^2$ \( ( 1 + 1230 T^{2} + p^{4} T^{4} )^{2} \)
61$C_2$ \( ( 1 + 97 T + p^{2} T^{2} )^{4} \)
67$C_2^2$ \( ( 1 + 8183 T^{2} + p^{4} T^{4} )^{2} \)
71$C_2^2$ \( ( 1 - 2144 T^{2} + p^{4} T^{4} )^{2} \)
73$C_2^2$ \( ( 1 - 10369 T^{2} + p^{4} T^{4} )^{2} \)
79$C_2$ \( ( 1 + 117 T + p^{2} T^{2} )^{4} \)
83$C_2^2$ \( ( 1 + 10416 T^{2} + p^{4} T^{4} )^{2} \)
89$C_2^2$ \( ( 1 + 5790 T^{2} + p^{4} T^{4} )^{2} \)
97$C_2^2$ \( ( 1 - 17137 T^{2} + p^{4} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.523538255757648600549769307080, −8.059843653728835941405224467200, −7.72032001487649892724053549921, −7.64416609404179819409672612968, −7.52459512192719955835933343433, −7.17142935146853601358500385269, −7.00276021494510628501129258156, −6.53986510889332854300495281877, −6.42337715814641026922664603941, −5.86054246800373039181320603907, −5.80680434782140274283877558300, −5.67828178371338410440676278178, −5.31709496252359784500379364903, −4.64551789743017742481933551045, −4.62035570483277094818272318317, −4.44394730890208115671551112675, −3.98080852638642440613935612769, −3.13031171883777641015509162688, −3.05886832782021414856996974910, −2.97327665894707987994278292604, −2.83196623411618390643609635684, −2.03060603758096147829823043011, −1.26116200381222817896854278136, −1.25958413739286067538748231550, −0.71014680247531317552898493909, 0.71014680247531317552898493909, 1.25958413739286067538748231550, 1.26116200381222817896854278136, 2.03060603758096147829823043011, 2.83196623411618390643609635684, 2.97327665894707987994278292604, 3.05886832782021414856996974910, 3.13031171883777641015509162688, 3.98080852638642440613935612769, 4.44394730890208115671551112675, 4.62035570483277094818272318317, 4.64551789743017742481933551045, 5.31709496252359784500379364903, 5.67828178371338410440676278178, 5.80680434782140274283877558300, 5.86054246800373039181320603907, 6.42337715814641026922664603941, 6.53986510889332854300495281877, 7.00276021494510628501129258156, 7.17142935146853601358500385269, 7.52459512192719955835933343433, 7.64416609404179819409672612968, 7.72032001487649892724053549921, 8.059843653728835941405224467200, 8.523538255757648600549769307080

Graph of the $Z$-function along the critical line