Properties

Label 4-3e6-1.1-c7e2-0-0
Degree $4$
Conductor $729$
Sign $1$
Analytic cond. $71.1390$
Root an. cond. $2.90420$
Motivic weight $7$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 122·4-s − 2.52e3·7-s + 1.91e4·13-s − 1.50e3·16-s − 4.38e4·19-s − 5.05e3·25-s − 3.07e5·28-s − 1.01e5·31-s + 4.92e5·37-s + 6.31e5·43-s + 3.12e6·49-s + 2.33e6·52-s − 9.95e5·61-s − 2.18e6·64-s + 2.67e6·67-s + 6.50e6·73-s − 5.35e6·76-s + 1.21e7·79-s − 4.83e7·91-s + 1.31e7·97-s − 6.16e5·100-s + 8.25e5·103-s + 3.69e7·109-s + 3.78e6·112-s − 3.67e7·121-s − 1.24e7·124-s + 127-s + ⋯
L(s)  = 1  + 0.953·4-s − 2.77·7-s + 2.41·13-s − 0.0915·16-s − 1.46·19-s − 0.0646·25-s − 2.64·28-s − 0.613·31-s + 1.59·37-s + 1.21·43-s + 3.79·49-s + 2.30·52-s − 0.561·61-s − 1.04·64-s + 1.08·67-s + 1.95·73-s − 1.39·76-s + 2.77·79-s − 6.72·91-s + 1.46·97-s − 0.0616·100-s + 0.0743·103-s + 2.73·109-s + 0.254·112-s − 1.88·121-s − 0.585·124-s + 4.07·133-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 729 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 729 ^{s/2} \, \Gamma_{\C}(s+7/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(729\)    =    \(3^{6}\)
Sign: $1$
Analytic conductor: \(71.1390\)
Root analytic conductor: \(2.90420\)
Motivic weight: \(7\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 729,\ (\ :7/2, 7/2),\ 1)\)

Particular Values

\(L(4)\) \(\approx\) \(1.746349880\)
\(L(\frac12)\) \(\approx\) \(1.746349880\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3 \( 1 \)
good2$C_2^2$ \( 1 - 61 p T^{2} + p^{14} T^{4} \)
5$C_2^2$ \( 1 + 202 p^{2} T^{2} + p^{14} T^{4} \)
7$C_2$ \( ( 1 + 1261 T + p^{7} T^{2} )^{2} \)
11$C_2^2$ \( 1 + 36791014 T^{2} + p^{14} T^{4} \)
13$C_2$ \( ( 1 - 737 p T + p^{7} T^{2} )^{2} \)
17$C_2^2$ \( 1 + 369925954 T^{2} + p^{14} T^{4} \)
19$C_2$ \( ( 1 + 21931 T + p^{7} T^{2} )^{2} \)
23$C_2^2$ \( 1 - 575108306 T^{2} + p^{14} T^{4} \)
29$C_2^2$ \( 1 + 33453109930 T^{2} + p^{14} T^{4} \)
31$C_2$ \( ( 1 + 50908 T + p^{7} T^{2} )^{2} \)
37$C_2$ \( ( 1 - 246467 T + p^{7} T^{2} )^{2} \)
41$C_2^2$ \( 1 + 16245728434 T^{2} + p^{14} T^{4} \)
43$C_2$ \( ( 1 - 315512 T + p^{7} T^{2} )^{2} \)
47$C_2^2$ \( 1 + 832483078654 T^{2} + p^{14} T^{4} \)
53$C_2^2$ \( 1 + 2333195229562 T^{2} + p^{14} T^{4} \)
59$C_2^2$ \( 1 + 4047812406406 T^{2} + p^{14} T^{4} \)
61$C_2$ \( ( 1 + 497953 T + p^{7} T^{2} )^{2} \)
67$C_2$ \( ( 1 - 1336361 T + p^{7} T^{2} )^{2} \)
71$C_2^2$ \( 1 + 17376702039790 T^{2} + p^{14} T^{4} \)
73$C_2$ \( ( 1 - 3250793 T + p^{7} T^{2} )^{2} \)
79$C_2$ \( ( 1 - 6075485 T + p^{7} T^{2} )^{2} \)
83$C_2^2$ \( 1 - 12831979431434 T^{2} + p^{14} T^{4} \)
89$C_2^2$ \( 1 - 81596562001742 T^{2} + p^{14} T^{4} \)
97$C_2$ \( ( 1 - 6570629 T + p^{7} T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.09573076286654212437289346155, −15.54151922671982725401025626497, −15.30531053491726731468585618153, −14.06635388479048649217379819389, −13.35423197678409463548671907688, −12.87426377964223716994391174364, −12.58329156384406705025285111853, −11.46009455567208780498189802363, −10.86278126331819736099924331314, −10.35893280379392073997963270173, −9.358301319847822476760555356046, −8.986975780076536848194280762084, −7.87372807022519824818906293427, −6.61824225810364026712943063372, −6.42555123176556710940437182330, −5.95823610460272958072634246998, −3.93866050416968271871970749261, −3.33661530301984159207579782610, −2.29744490774972589050450996139, −0.65237155630376071661756896066, 0.65237155630376071661756896066, 2.29744490774972589050450996139, 3.33661530301984159207579782610, 3.93866050416968271871970749261, 5.95823610460272958072634246998, 6.42555123176556710940437182330, 6.61824225810364026712943063372, 7.87372807022519824818906293427, 8.986975780076536848194280762084, 9.358301319847822476760555356046, 10.35893280379392073997963270173, 10.86278126331819736099924331314, 11.46009455567208780498189802363, 12.58329156384406705025285111853, 12.87426377964223716994391174364, 13.35423197678409463548671907688, 14.06635388479048649217379819389, 15.30531053491726731468585618153, 15.54151922671982725401025626497, 16.09573076286654212437289346155

Graph of the $Z$-function along the critical line