Properties

Degree 2
Conductor $ 3^{3} $
Sign $0.611 - 0.791i$
Motivic weight 3
Primitive yes
Self-dual no
Analytic rank 0

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + (4.06 + 3.41i)2-s + (−1.93 − 4.82i)3-s + (3.50 + 19.8i)4-s + (−5.18 − 1.88i)5-s + (8.57 − 26.2i)6-s + (4.27 − 24.2i)7-s + (−32.2 + 55.9i)8-s + (−19.5 + 18.6i)9-s + (−14.6 − 25.3i)10-s + (0.554 − 0.201i)11-s + (88.9 − 55.3i)12-s + (−1.25 + 1.05i)13-s + (100. − 84.0i)14-s + (0.937 + 28.6i)15-s + (−170. + 62.0i)16-s + (33.3 + 57.6i)17-s + ⋯
L(s)  = 1  + (1.43 + 1.20i)2-s + (−0.372 − 0.927i)3-s + (0.437 + 2.48i)4-s + (−0.463 − 0.168i)5-s + (0.583 − 1.78i)6-s + (0.230 − 1.30i)7-s + (−1.42 + 2.47i)8-s + (−0.722 + 0.691i)9-s + (−0.462 − 0.801i)10-s + (0.0152 − 0.00553i)11-s + (2.14 − 1.33i)12-s + (−0.0268 + 0.0225i)13-s + (1.91 − 1.60i)14-s + (0.0161 + 0.492i)15-s + (−2.66 + 0.969i)16-s + (0.475 + 0.823i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 27 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.611 - 0.791i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 27 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.611 - 0.791i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

\( d \)  =  \(2\)
\( N \)  =  \(27\)    =    \(3^{3}\)
\( \varepsilon \)  =  $0.611 - 0.791i$
motivic weight  =  \(3\)
character  :  $\chi_{27} (16, \cdot )$
primitive  :  yes
self-dual  :  no
analytic rank  =  0
Selberg data  =  $(2,\ 27,\ (\ :3/2),\ 0.611 - 0.791i)$
$L(2)$  $\approx$  $1.72541 + 0.847006i$
$L(\frac12)$  $\approx$  $1.72541 + 0.847006i$
$L(\frac{5}{2})$   not available
$L(1)$   not available

Euler product

\[L(s) = \prod_{p \text{ prime}} F_p(p^{-s})^{-1} \]where, for $p \neq 3$,\(F_p(T)\) is a polynomial of degree 2. If $p = 3$, then $F_p(T)$ is a polynomial of degree at most 1.
$p$$F_p(T)$
bad3 \( 1 + (1.93 + 4.82i)T \)
good2 \( 1 + (-4.06 - 3.41i)T + (1.38 + 7.87i)T^{2} \)
5 \( 1 + (5.18 + 1.88i)T + (95.7 + 80.3i)T^{2} \)
7 \( 1 + (-4.27 + 24.2i)T + (-322. - 117. i)T^{2} \)
11 \( 1 + (-0.554 + 0.201i)T + (1.01e3 - 855. i)T^{2} \)
13 \( 1 + (1.25 - 1.05i)T + (381. - 2.16e3i)T^{2} \)
17 \( 1 + (-33.3 - 57.6i)T + (-2.45e3 + 4.25e3i)T^{2} \)
19 \( 1 + (-6.62 + 11.4i)T + (-3.42e3 - 5.94e3i)T^{2} \)
23 \( 1 + (-28.1 - 159. i)T + (-1.14e4 + 4.16e3i)T^{2} \)
29 \( 1 + (54.0 + 45.3i)T + (4.23e3 + 2.40e4i)T^{2} \)
31 \( 1 + (24.1 + 137. i)T + (-2.79e4 + 1.01e4i)T^{2} \)
37 \( 1 + (40.2 + 69.7i)T + (-2.53e4 + 4.38e4i)T^{2} \)
41 \( 1 + (-130. + 109. i)T + (1.19e4 - 6.78e4i)T^{2} \)
43 \( 1 + (-456. + 166. i)T + (6.09e4 - 5.11e4i)T^{2} \)
47 \( 1 + (-17.5 + 99.3i)T + (-9.75e4 - 3.55e4i)T^{2} \)
53 \( 1 + 374.T + 1.48e5T^{2} \)
59 \( 1 + (97.7 + 35.5i)T + (1.57e5 + 1.32e5i)T^{2} \)
61 \( 1 + (-85.6 + 485. i)T + (-2.13e5 - 7.76e4i)T^{2} \)
67 \( 1 + (567. - 476. i)T + (5.22e4 - 2.96e5i)T^{2} \)
71 \( 1 + (-96.7 - 167. i)T + (-1.78e5 + 3.09e5i)T^{2} \)
73 \( 1 + (400. - 694. i)T + (-1.94e5 - 3.36e5i)T^{2} \)
79 \( 1 + (-899. - 754. i)T + (8.56e4 + 4.85e5i)T^{2} \)
83 \( 1 + (918. + 770. i)T + (9.92e4 + 5.63e5i)T^{2} \)
89 \( 1 + (694. - 1.20e3i)T + (-3.52e5 - 6.10e5i)T^{2} \)
97 \( 1 + (413. - 150. i)T + (6.99e5 - 5.86e5i)T^{2} \)
show more
show less
\[\begin{aligned}L(s) = \prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\end{aligned}\]

Imaginary part of the first few zeros on the critical line

−16.93663001679087570026890663532, −15.72330984035532747065662818145, −14.30207592467338234961357726808, −13.49246456157568028492606642505, −12.49778875203119819448050985011, −11.26832743088452748791233411985, −7.925357879845483883295042273512, −7.21833877167778151728093511558, −5.73189330536702766820685614977, −4.00908443611332755794777030934, 2.98587515367728897416871381677, 4.67616862239240488925019471336, 5.86871628198039229119774045522, 9.283847846780742373364112672033, 10.72379408033116987721125106011, 11.71400220146776053483979635914, 12.47640146571388763731471707337, 14.30766726690575310015018551927, 15.09297388671678766861216227666, 16.06683650205129104195741500569

Graph of the $Z$-function along the critical line