Properties

Label 2-3e3-3.2-c10-0-7
Degree $2$
Conductor $27$
Sign $1$
Analytic cond. $17.1546$
Root an. cond. $4.14181$
Motivic weight $10$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.02e3·4-s + 1.09e4·7-s − 1.41e5·13-s + 1.04e6·16-s + 4.92e6·19-s + 9.76e6·25-s + 1.11e7·28-s + 4.93e7·31-s − 4.08e7·37-s − 2.82e8·43-s − 1.63e8·49-s − 1.45e8·52-s − 1.35e9·61-s + 1.07e9·64-s + 2.69e9·67-s + 1.95e9·73-s + 5.04e9·76-s − 6.05e9·79-s − 1.54e9·91-s − 1.52e10·97-s + 1.00e10·100-s − 1.82e10·103-s − 1.76e10·109-s + 1.14e10·112-s + ⋯
L(s)  = 1  + 4-s + 0.648·7-s − 0.382·13-s + 16-s + 1.98·19-s + 25-s + 0.648·28-s + 1.72·31-s − 0.589·37-s − 1.92·43-s − 0.578·49-s − 0.382·52-s − 1.60·61-s + 64-s + 1.99·67-s + 0.944·73-s + 1.98·76-s − 1.96·79-s − 0.248·91-s − 1.78·97-s + 100-s − 1.57·103-s − 1.14·109-s + 0.648·112-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 27 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(11-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 27 ^{s/2} \, \Gamma_{\C}(s+5) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(27\)    =    \(3^{3}\)
Sign: $1$
Analytic conductor: \(17.1546\)
Root analytic conductor: \(4.14181\)
Motivic weight: \(10\)
Rational: yes
Arithmetic: yes
Character: $\chi_{27} (26, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 27,\ (\ :5),\ 1)\)

Particular Values

\(L(\frac{11}{2})\) \(\approx\) \(2.606564216\)
\(L(\frac12)\) \(\approx\) \(2.606564216\)
\(L(6)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
good2 \( ( 1 - p^{5} T )( 1 + p^{5} T ) \)
5 \( ( 1 - p^{5} T )( 1 + p^{5} T ) \)
7 \( 1 - 10907 T + p^{10} T^{2} \)
11 \( ( 1 - p^{5} T )( 1 + p^{5} T ) \)
13 \( 1 + 141961 T + p^{10} T^{2} \)
17 \( ( 1 - p^{5} T )( 1 + p^{5} T ) \)
19 \( 1 - 4926251 T + p^{10} T^{2} \)
23 \( ( 1 - p^{5} T )( 1 + p^{5} T ) \)
29 \( ( 1 - p^{5} T )( 1 + p^{5} T ) \)
31 \( 1 - 49326674 T + p^{10} T^{2} \)
37 \( 1 + 40895593 T + p^{10} T^{2} \)
41 \( ( 1 - p^{5} T )( 1 + p^{5} T ) \)
43 \( 1 + 282780982 T + p^{10} T^{2} \)
47 \( ( 1 - p^{5} T )( 1 + p^{5} T ) \)
53 \( ( 1 - p^{5} T )( 1 + p^{5} T ) \)
59 \( ( 1 - p^{5} T )( 1 + p^{5} T ) \)
61 \( 1 + 1354266001 T + p^{10} T^{2} \)
67 \( 1 - 2698325411 T + p^{10} T^{2} \)
71 \( ( 1 - p^{5} T )( 1 + p^{5} T ) \)
73 \( 1 - 1957684943 T + p^{10} T^{2} \)
79 \( 1 + 6059886949 T + p^{10} T^{2} \)
83 \( ( 1 - p^{5} T )( 1 + p^{5} T ) \)
89 \( ( 1 - p^{5} T )( 1 + p^{5} T ) \)
97 \( 1 + 15296411593 T + p^{10} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.10897233771988936681046773664, −13.91320064904530394078692702111, −12.18445339564894320163557943259, −11.29411118258827257415831146295, −9.938722119307850696693413414500, −8.074648144393432000214785922438, −6.83341164141748903694757616143, −5.15467648076097719150934558906, −2.97693944742217042948623518665, −1.31679181013728795472017017929, 1.31679181013728795472017017929, 2.97693944742217042948623518665, 5.15467648076097719150934558906, 6.83341164141748903694757616143, 8.074648144393432000214785922438, 9.938722119307850696693413414500, 11.29411118258827257415831146295, 12.18445339564894320163557943259, 13.91320064904530394078692702111, 15.10897233771988936681046773664

Graph of the $Z$-function along the critical line