L(s) = 1 | + (−0.5 − 0.866i)2-s + (−0.499 + 0.866i)4-s + (−1.5 + 2.59i)5-s + 0.999·8-s + 3·10-s + (−1.5 − 2.59i)11-s + (−0.5 + 0.866i)13-s + (−0.5 − 0.866i)16-s + 3·17-s + 7·19-s + (−1.50 − 2.59i)20-s + (−1.5 + 2.59i)22-s + (−4.5 + 7.79i)23-s + (−2 − 3.46i)25-s + 0.999·26-s + ⋯ |
L(s) = 1 | + (−0.353 − 0.612i)2-s + (−0.249 + 0.433i)4-s + (−0.670 + 1.16i)5-s + 0.353·8-s + 0.948·10-s + (−0.452 − 0.783i)11-s + (−0.138 + 0.240i)13-s + (−0.125 − 0.216i)16-s + 0.727·17-s + 1.60·19-s + (−0.335 − 0.580i)20-s + (−0.319 + 0.553i)22-s + (−0.938 + 1.62i)23-s + (−0.400 − 0.692i)25-s + 0.196·26-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2646 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.173 - 0.984i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2646 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.173 - 0.984i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.7785142144\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.7785142144\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.5 + 0.866i)T \) |
| 3 | \( 1 \) |
| 7 | \( 1 \) |
good | 5 | \( 1 + (1.5 - 2.59i)T + (-2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + (1.5 + 2.59i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + (0.5 - 0.866i)T + (-6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 - 3T + 17T^{2} \) |
| 19 | \( 1 - 7T + 19T^{2} \) |
| 23 | \( 1 + (4.5 - 7.79i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-1.5 - 2.59i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (-4 + 6.92i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + T + 37T^{2} \) |
| 41 | \( 1 + (1.5 - 2.59i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-0.5 - 0.866i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + 3T + 53T^{2} \) |
| 59 | \( 1 + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-1 - 1.73i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-2 + 3.46i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 12T + 71T^{2} \) |
| 73 | \( 1 + 11T + 73T^{2} \) |
| 79 | \( 1 + (-8 - 13.8i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (-4.5 - 7.79i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 - 3T + 89T^{2} \) |
| 97 | \( 1 + (0.5 + 0.866i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.290981446306554925699982864772, −8.061979431981342542534257037414, −7.75285502443630811403715359906, −7.04013205317823371423477137727, −5.99292637265878913364615025477, −5.18654243284805141026135550587, −3.88546006306761298638424433377, −3.30421740220260141441817031195, −2.63052674334801285546256597562, −1.20977495287210723993184779910,
0.33310718636645553377475364910, 1.42577152465430470761977922312, 2.88750228013920885480686459987, 4.13832995751934852907245563702, 4.85633877957346688108075555313, 5.39887763587182953376114142405, 6.42117742284726696914253610642, 7.38848489857916687051915165467, 7.904790115246416147630769096554, 8.505605718309281142603713440895