L(s) = 1 | + 2-s + 4-s + (−1 − 1.73i)5-s + 8-s + (−1 − 1.73i)10-s + (0.5 − 0.866i)11-s + (−3 + 5.19i)13-s + 16-s + (2.5 + 4.33i)17-s + (−3.5 + 6.06i)19-s + (−1 − 1.73i)20-s + (0.5 − 0.866i)22-s + (2 + 3.46i)23-s + (0.500 − 0.866i)25-s + (−3 + 5.19i)26-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 0.5·4-s + (−0.447 − 0.774i)5-s + 0.353·8-s + (−0.316 − 0.547i)10-s + (0.150 − 0.261i)11-s + (−0.832 + 1.44i)13-s + 0.250·16-s + (0.606 + 1.05i)17-s + (−0.802 + 1.39i)19-s + (−0.223 − 0.387i)20-s + (0.106 − 0.184i)22-s + (0.417 + 0.722i)23-s + (0.100 − 0.173i)25-s + (−0.588 + 1.01i)26-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2646 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.580 - 0.814i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2646 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.580 - 0.814i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.238293608\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.238293608\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 - T \) |
| 3 | \( 1 \) |
| 7 | \( 1 \) |
good | 5 | \( 1 + (1 + 1.73i)T + (-2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (-0.5 + 0.866i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (3 - 5.19i)T + (-6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + (-2.5 - 4.33i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (3.5 - 6.06i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-2 - 3.46i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (2 + 3.46i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 - 6T + 31T^{2} \) |
| 37 | \( 1 + (1 - 1.73i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (1.5 - 2.59i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-0.5 - 0.866i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + 47T^{2} \) |
| 53 | \( 1 + (-6 - 10.3i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + 7T + 59T^{2} \) |
| 61 | \( 1 - 12T + 61T^{2} \) |
| 67 | \( 1 - 13T + 67T^{2} \) |
| 71 | \( 1 - 8T + 71T^{2} \) |
| 73 | \( 1 + (-0.5 - 0.866i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + 6T + 79T^{2} \) |
| 83 | \( 1 + (8 + 13.8i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + (-3 + 5.19i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (2.5 + 4.33i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.824537020284113034576864295785, −8.184883916916409380258534138285, −7.46953214515554653338834033136, −6.49450195190736478250962917695, −5.88423158706739244196362519730, −4.89783466270173034517463189919, −4.21424714782467516569326268032, −3.62518222537799671455367773040, −2.28054833530608926522103083145, −1.29618045355674907519473690409,
0.59523808368005027353619726588, 2.46873780427177624427120869078, 2.93773597615254736522531702806, 3.87465620460471598696718811595, 4.98605236920549854540505505085, 5.34229888889911994662927712937, 6.71160211739112702738620937727, 6.98116186406118996901187215024, 7.77931901657701262305213377583, 8.605883999802532178731957389133