Properties

Label 16-2646e8-1.1-c1e8-0-10
Degree $16$
Conductor $2.403\times 10^{27}$
Sign $1$
Analytic cond. $3.97132\times 10^{10}$
Root an. cond. $4.59656$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·4-s + 10·16-s − 16·25-s + 8·37-s + 56·43-s − 20·64-s + 40·67-s + 40·79-s + 64·100-s − 40·109-s + 16·121-s + 127-s + 131-s + 137-s + 139-s − 32·148-s + 149-s + 151-s + 157-s + 163-s + 167-s + 68·169-s − 224·172-s + 173-s + 179-s + 181-s + 191-s + ⋯
L(s)  = 1  − 2·4-s + 5/2·16-s − 3.19·25-s + 1.31·37-s + 8.53·43-s − 5/2·64-s + 4.88·67-s + 4.50·79-s + 32/5·100-s − 3.83·109-s + 1.45·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s − 2.63·148-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 5.23·169-s − 17.0·172-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{8} \cdot 3^{24} \cdot 7^{16}\right)^{s/2} \, \Gamma_{\C}(s)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{8} \cdot 3^{24} \cdot 7^{16}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(16\)
Conductor: \(2^{8} \cdot 3^{24} \cdot 7^{16}\)
Sign: $1$
Analytic conductor: \(3.97132\times 10^{10}\)
Root analytic conductor: \(4.59656\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((16,\ 2^{8} \cdot 3^{24} \cdot 7^{16} ,\ ( \ : [1/2]^{8} ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(7.441898752\)
\(L(\frac12)\) \(\approx\) \(7.441898752\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( ( 1 + T^{2} )^{4} \)
3 \( 1 \)
7 \( 1 \)
good5 \( ( 1 + 4 T^{2} + p^{2} T^{4} )^{4} \)
11 \( ( 1 - 4 T^{2} + p^{2} T^{4} )^{4} \)
13 \( ( 1 - 34 T^{2} + 555 T^{4} - 34 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
17 \( ( 1 + 28 T^{2} + p^{2} T^{4} )^{4} \)
19 \( ( 1 - 14 T^{2} + p^{2} T^{4} )^{4} \)
23 \( ( 1 - 10 T^{2} + p^{2} T^{4} )^{4} \)
29 \( ( 1 - 8 T^{2} - 894 T^{4} - 8 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
31 \( ( 1 - 10 T^{2} + 1299 T^{4} - 10 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
37 \( ( 1 - 2 T + 57 T^{2} - 2 p T^{3} + p^{2} T^{4} )^{4} \)
41 \( ( 1 + 76 T^{2} + p^{2} T^{4} )^{4} \)
43 \( ( 1 - 7 T + p T^{2} )^{8} \)
47 \( ( 1 - 40 T^{2} + 2226 T^{4} - 40 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
53 \( ( 1 + 4 T^{2} - 4746 T^{4} + 4 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
59 \( ( 1 + 112 T^{2} + p^{2} T^{4} )^{4} \)
61 \( ( 1 - 226 T^{2} + 20139 T^{4} - 226 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
67 \( ( 1 - 10 T + 87 T^{2} - 10 p T^{3} + p^{2} T^{4} )^{4} \)
71 \( ( 1 + 20 T^{2} + p^{2} T^{4} )^{4} \)
73 \( ( 1 - 28 T^{2} + 486 T^{4} - 28 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
79 \( ( 1 - 10 T + 165 T^{2} - 10 p T^{3} + p^{2} T^{4} )^{4} \)
83 \( ( 1 + 68 T^{2} + 4566 T^{4} + 68 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
89 \( ( 1 + 32 T^{2} - 7230 T^{4} + 32 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
97 \( ( 1 - 334 T^{2} + 46419 T^{4} - 334 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{16} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−3.79682439842408725645974194372, −3.63880931653081089649976108886, −3.50309032284361117387764734757, −3.38029203801264367902914301147, −3.25255356433290708160529303314, −3.15701509156585692395755774083, −2.94468464875930285391337968748, −2.83078959449366713392229140092, −2.69886050586456376622402975167, −2.68535881997343551267743626001, −2.31698841400402936106761776552, −2.26856594744872049951193987211, −2.17892325390047760207801638332, −2.14359464356999346487198401635, −2.01974174182680185381827974692, −1.79222205244829719042190605170, −1.67634309711949696381338865944, −1.54159060301672593619450066375, −0.983601803966360018328431051460, −0.974296306875470715659204744582, −0.945017880390302524310348376166, −0.67743295333349314608845653816, −0.60200044865039844948310046568, −0.59728340232999986154178215684, −0.25908327105876428669170023508, 0.25908327105876428669170023508, 0.59728340232999986154178215684, 0.60200044865039844948310046568, 0.67743295333349314608845653816, 0.945017880390302524310348376166, 0.974296306875470715659204744582, 0.983601803966360018328431051460, 1.54159060301672593619450066375, 1.67634309711949696381338865944, 1.79222205244829719042190605170, 2.01974174182680185381827974692, 2.14359464356999346487198401635, 2.17892325390047760207801638332, 2.26856594744872049951193987211, 2.31698841400402936106761776552, 2.68535881997343551267743626001, 2.69886050586456376622402975167, 2.83078959449366713392229140092, 2.94468464875930285391337968748, 3.15701509156585692395755774083, 3.25255356433290708160529303314, 3.38029203801264367902914301147, 3.50309032284361117387764734757, 3.63880931653081089649976108886, 3.79682439842408725645974194372

Graph of the $Z$-function along the critical line

Plot not available for L-functions of degree greater than 10.