Properties

Label 2-2646-1.1-c1-0-8
Degree $2$
Conductor $2646$
Sign $1$
Analytic cond. $21.1284$
Root an. cond. $4.59656$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s − 8-s + 6·11-s − 5·13-s + 16-s − 6·17-s + 4·19-s − 6·22-s + 6·23-s − 5·25-s + 5·26-s + 6·29-s + 31-s − 32-s + 6·34-s − 37-s − 4·38-s + 6·41-s − 43-s + 6·44-s − 6·46-s + 6·47-s + 5·50-s − 5·52-s − 6·53-s − 6·58-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s − 0.353·8-s + 1.80·11-s − 1.38·13-s + 1/4·16-s − 1.45·17-s + 0.917·19-s − 1.27·22-s + 1.25·23-s − 25-s + 0.980·26-s + 1.11·29-s + 0.179·31-s − 0.176·32-s + 1.02·34-s − 0.164·37-s − 0.648·38-s + 0.937·41-s − 0.152·43-s + 0.904·44-s − 0.884·46-s + 0.875·47-s + 0.707·50-s − 0.693·52-s − 0.824·53-s − 0.787·58-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2646 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2646 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2646\)    =    \(2 \cdot 3^{3} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(21.1284\)
Root analytic conductor: \(4.59656\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2646,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.306615511\)
\(L(\frac12)\) \(\approx\) \(1.306615511\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 \)
7 \( 1 \)
good5 \( 1 + p T^{2} \) 1.5.a
11 \( 1 - 6 T + p T^{2} \) 1.11.ag
13 \( 1 + 5 T + p T^{2} \) 1.13.f
17 \( 1 + 6 T + p T^{2} \) 1.17.g
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 - T + p T^{2} \) 1.31.ab
37 \( 1 + T + p T^{2} \) 1.37.b
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 + T + p T^{2} \) 1.43.b
47 \( 1 - 6 T + p T^{2} \) 1.47.ag
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 - 6 T + p T^{2} \) 1.59.ag
61 \( 1 - T + p T^{2} \) 1.61.ab
67 \( 1 + T + p T^{2} \) 1.67.b
71 \( 1 - 12 T + p T^{2} \) 1.71.am
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 + T + p T^{2} \) 1.79.b
83 \( 1 + 6 T + p T^{2} \) 1.83.g
89 \( 1 + p T^{2} \) 1.89.a
97 \( 1 + 17 T + p T^{2} \) 1.97.r
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.057732301440674521981200930486, −8.213222746268842791227564813953, −7.17756521662208616357912102378, −6.86373819824463860920029366770, −5.99293789071915916490293453418, −4.87602663790637391350842024269, −4.09964776417661011092906723802, −2.95453084311476587817392272476, −1.97786137008912495989390313194, −0.807787551671847026691110476191, 0.807787551671847026691110476191, 1.97786137008912495989390313194, 2.95453084311476587817392272476, 4.09964776417661011092906723802, 4.87602663790637391350842024269, 5.99293789071915916490293453418, 6.86373819824463860920029366770, 7.17756521662208616357912102378, 8.213222746268842791227564813953, 9.057732301440674521981200930486

Graph of the $Z$-function along the critical line