L(s) = 1 | + (1.68 − 0.190i)2-s + (−1.08 + 0.248i)4-s + (−0.141 − 0.113i)5-s + (−1.55 + 6.79i)7-s + (−8.20 + 2.86i)8-s + (−0.260 − 0.163i)10-s + (12.2 + 4.28i)11-s + (9.66 + 20.0i)13-s + (−1.32 + 11.7i)14-s + (−9.27 + 4.46i)16-s + (5.90 + 5.90i)17-s + (−10.7 + 17.0i)19-s + (0.182 + 0.0877i)20-s + (21.5 + 4.90i)22-s + (−15.0 − 18.8i)23-s + ⋯ |
L(s) = 1 | + (0.843 − 0.0950i)2-s + (−0.271 + 0.0620i)4-s + (−0.0283 − 0.0226i)5-s + (−0.221 + 0.970i)7-s + (−1.02 + 0.358i)8-s + (−0.0260 − 0.0163i)10-s + (1.11 + 0.389i)11-s + (0.743 + 1.54i)13-s + (−0.0946 + 0.840i)14-s + (−0.579 + 0.279i)16-s + (0.347 + 0.347i)17-s + (−0.565 + 0.899i)19-s + (0.00910 + 0.00438i)20-s + (0.977 + 0.223i)22-s + (−0.653 − 0.819i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 261 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.182 - 0.983i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 261 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.182 - 0.983i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(1.42149 + 1.18210i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.42149 + 1.18210i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 29 | \( 1 + (28.5 - 4.93i)T \) |
good | 2 | \( 1 + (-1.68 + 0.190i)T + (3.89 - 0.890i)T^{2} \) |
| 5 | \( 1 + (0.141 + 0.113i)T + (5.56 + 24.3i)T^{2} \) |
| 7 | \( 1 + (1.55 - 6.79i)T + (-44.1 - 21.2i)T^{2} \) |
| 11 | \( 1 + (-12.2 - 4.28i)T + (94.6 + 75.4i)T^{2} \) |
| 13 | \( 1 + (-9.66 - 20.0i)T + (-105. + 132. i)T^{2} \) |
| 17 | \( 1 + (-5.90 - 5.90i)T + 289iT^{2} \) |
| 19 | \( 1 + (10.7 - 17.0i)T + (-156. - 325. i)T^{2} \) |
| 23 | \( 1 + (15.0 + 18.8i)T + (-117. + 515. i)T^{2} \) |
| 31 | \( 1 + (-35.5 + 4.01i)T + (936. - 213. i)T^{2} \) |
| 37 | \( 1 + (23.0 - 8.08i)T + (1.07e3 - 853. i)T^{2} \) |
| 41 | \( 1 + (-14.1 + 14.1i)T - 1.68e3iT^{2} \) |
| 43 | \( 1 + (4.31 - 38.2i)T + (-1.80e3 - 411. i)T^{2} \) |
| 47 | \( 1 + (1.53 - 4.38i)T + (-1.72e3 - 1.37e3i)T^{2} \) |
| 53 | \( 1 + (-51.0 + 63.9i)T + (-625. - 2.73e3i)T^{2} \) |
| 59 | \( 1 + 28.0T + 3.48e3T^{2} \) |
| 61 | \( 1 + (3.26 - 2.05i)T + (1.61e3 - 3.35e3i)T^{2} \) |
| 67 | \( 1 + (2.88 - 5.98i)T + (-2.79e3 - 3.50e3i)T^{2} \) |
| 71 | \( 1 + (-15.5 - 32.3i)T + (-3.14e3 + 3.94e3i)T^{2} \) |
| 73 | \( 1 + (-103. - 11.6i)T + (5.19e3 + 1.18e3i)T^{2} \) |
| 79 | \( 1 + (28.1 + 80.4i)T + (-4.87e3 + 3.89e3i)T^{2} \) |
| 83 | \( 1 + (-6.13 - 26.8i)T + (-6.20e3 + 2.98e3i)T^{2} \) |
| 89 | \( 1 + (26.8 - 3.02i)T + (7.72e3 - 1.76e3i)T^{2} \) |
| 97 | \( 1 + (6.09 + 3.82i)T + (4.08e3 + 8.47e3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.09832695058458568710386125684, −11.51606826312507205755652895772, −9.943926631292020832878383947178, −8.997192287597137840093649032134, −8.362993725015938727392372179579, −6.50441248389517300178361870080, −5.95325665619436150132678050468, −4.47228575047909231668193110094, −3.73987375095555040179552002477, −2.06490698991095689970404939993,
0.76966369520124898797270769826, 3.33107143923682147037260413040, 4.01957167947656893906650149445, 5.37445008807065721981445798491, 6.27892154268316878090950332494, 7.44147397178837651230368866217, 8.698353885794394340584993035380, 9.655348330289800101395929074842, 10.69044840287076181585038466238, 11.68707814645364128381264209755