Properties

Label 4-51e4-1.1-c1e2-0-5
Degree $4$
Conductor $6765201$
Sign $1$
Analytic cond. $431.355$
Root an. cond. $4.55731$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·4-s − 2·5-s − 2·11-s + 2·13-s − 6·19-s + 4·20-s + 10·23-s − 7·25-s + 16·29-s − 22·41-s − 18·43-s + 4·44-s − 12·49-s − 4·52-s + 4·55-s + 8·64-s − 4·65-s − 20·67-s + 20·71-s + 12·76-s − 20·92-s + 12·95-s + 14·100-s + 10·103-s − 14·107-s + 10·113-s − 20·115-s + ⋯
L(s)  = 1  − 4-s − 0.894·5-s − 0.603·11-s + 0.554·13-s − 1.37·19-s + 0.894·20-s + 2.08·23-s − 7/5·25-s + 2.97·29-s − 3.43·41-s − 2.74·43-s + 0.603·44-s − 1.71·49-s − 0.554·52-s + 0.539·55-s + 64-s − 0.496·65-s − 2.44·67-s + 2.37·71-s + 1.37·76-s − 2.08·92-s + 1.23·95-s + 7/5·100-s + 0.985·103-s − 1.35·107-s + 0.940·113-s − 1.86·115-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6765201 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6765201 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(6765201\)    =    \(3^{4} \cdot 17^{4}\)
Sign: $1$
Analytic conductor: \(431.355\)
Root analytic conductor: \(4.55731\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 6765201,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3 \( 1 \)
17 \( 1 \)
good2$C_2^2$ \( 1 + p T^{2} + p^{2} T^{4} \)
5$C_2$ \( ( 1 + T + p T^{2} )^{2} \)
7$C_2^2$ \( 1 + 12 T^{2} + p^{2} T^{4} \)
11$C_2$ \( ( 1 + T + p T^{2} )^{2} \)
13$C_2$ \( ( 1 - T + p T^{2} )^{2} \)
19$C_2$ \( ( 1 + 3 T + p T^{2} )^{2} \)
23$C_2$ \( ( 1 - 5 T + p T^{2} )^{2} \)
29$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
31$C_2^2$ \( 1 + 30 T^{2} + p^{2} T^{4} \)
37$C_2^2$ \( 1 + 72 T^{2} + p^{2} T^{4} \)
41$C_2$ \( ( 1 + 11 T + p T^{2} )^{2} \)
43$C_2$ \( ( 1 + 9 T + p T^{2} )^{2} \)
47$C_2^2$ \( 1 + 22 T^{2} + p^{2} T^{4} \)
53$C_2^2$ \( 1 + 98 T^{2} + p^{2} T^{4} \)
59$C_2^2$ \( 1 + 20 T^{2} + p^{2} T^{4} \)
61$C_2^2$ \( 1 + 72 T^{2} + p^{2} T^{4} \)
67$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 - 10 T + p T^{2} )^{2} \)
73$C_2^2$ \( 1 + 18 T^{2} + p^{2} T^{4} \)
79$C_2^2$ \( 1 + 108 T^{2} + p^{2} T^{4} \)
83$C_2^2$ \( 1 - 34 T^{2} + p^{2} T^{4} \)
89$C_2^2$ \( 1 + 160 T^{2} + p^{2} T^{4} \)
97$C_2^2$ \( 1 - 6 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.457082831516044211034578429793, −8.360100864596840843858824042230, −8.150476895713820543385545537081, −7.79691265281051227930607866587, −7.01228030851359434126049935377, −6.72622308619066112764533449728, −6.55493244990709712735737303754, −6.10984218965192148580390478757, −5.31187253318571871459919454951, −4.92698454103035525172474583499, −4.81038919621767539359377199819, −4.50013119829340008410672241173, −3.65698459889650032998969921090, −3.61368485568681109035597776554, −3.05128961370685963844137340381, −2.51344594506643183186678679784, −1.72016940680890540653911574939, −1.17327626079928707214046596014, 0, 0, 1.17327626079928707214046596014, 1.72016940680890540653911574939, 2.51344594506643183186678679784, 3.05128961370685963844137340381, 3.61368485568681109035597776554, 3.65698459889650032998969921090, 4.50013119829340008410672241173, 4.81038919621767539359377199819, 4.92698454103035525172474583499, 5.31187253318571871459919454951, 6.10984218965192148580390478757, 6.55493244990709712735737303754, 6.72622308619066112764533449728, 7.01228030851359434126049935377, 7.79691265281051227930607866587, 8.150476895713820543385545537081, 8.360100864596840843858824042230, 8.457082831516044211034578429793

Graph of the $Z$-function along the critical line