Properties

Label 8-51e8-1.1-c1e4-0-1
Degree $8$
Conductor $4.577\times 10^{13}$
Sign $1$
Analytic cond. $186067.$
Root an. cond. $4.55731$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·2-s + 2·4-s + 20·8-s − 45·16-s − 16·32-s − 12·49-s − 16·53-s − 16·59-s + 204·64-s + 16·67-s + 16·83-s − 48·89-s + 48·98-s + 48·101-s + 32·103-s + 64·106-s + 64·118-s − 12·121-s + 127-s − 232·128-s + 131-s − 64·134-s + 137-s + 139-s + 149-s + 151-s + 157-s + ⋯
L(s)  = 1  − 2.82·2-s + 4-s + 7.07·8-s − 11.2·16-s − 2.82·32-s − 1.71·49-s − 2.19·53-s − 2.08·59-s + 51/2·64-s + 1.95·67-s + 1.75·83-s − 5.08·89-s + 4.84·98-s + 4.77·101-s + 3.15·103-s + 6.21·106-s + 5.89·118-s − 1.09·121-s + 0.0887·127-s − 20.5·128-s + 0.0873·131-s − 5.52·134-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{8} \cdot 17^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{8} \cdot 17^{8}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(3^{8} \cdot 17^{8}\)
Sign: $1$
Analytic conductor: \(186067.\)
Root analytic conductor: \(4.55731\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 3^{8} \cdot 17^{8} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(0.3350015915\)
\(L(\frac12)\) \(\approx\) \(0.3350015915\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3 \( 1 \)
17 \( 1 \)
good2$C_2$ \( ( 1 + T + p T^{2} )^{4} \)
5$C_4\times C_2$ \( 1 + 48 T^{4} + p^{4} T^{8} \)
7$C_2^2:C_4$ \( 1 + 12 T^{2} + 102 T^{4} + 12 p^{2} T^{6} + p^{4} T^{8} \)
11$C_2^2:C_4$ \( 1 + 12 T^{2} + 150 T^{4} + 12 p^{2} T^{6} + p^{4} T^{8} \)
13$C_2^2$ \( ( 1 + 8 T^{2} + p^{2} T^{4} )^{2} \)
19$C_2^2$ \( ( 1 + 30 T^{2} + p^{2} T^{4} )^{2} \)
23$C_2^2:C_4$ \( 1 + 12 T^{2} - 474 T^{4} + 12 p^{2} T^{6} + p^{4} T^{8} \)
29$C_2^2:C_4$ \( 1 + 96 T^{2} + 3888 T^{4} + 96 p^{2} T^{6} + p^{4} T^{8} \)
31$C_2^2:C_4$ \( 1 + 108 T^{2} + 4806 T^{4} + 108 p^{2} T^{6} + p^{4} T^{8} \)
37$C_2^2:C_4$ \( 1 + 48 T^{2} + 1392 T^{4} + 48 p^{2} T^{6} + p^{4} T^{8} \)
41$C_2^2:C_4$ \( 1 + 144 T^{2} + 8448 T^{4} + 144 p^{2} T^{6} + p^{4} T^{8} \)
43$C_2^2$ \( ( 1 + 54 T^{2} + p^{2} T^{4} )^{2} \)
47$C_2^2$ \( ( 1 + 86 T^{2} + p^{2} T^{4} )^{2} \)
53$D_{4}$ \( ( 1 + 8 T + 104 T^{2} + 8 p T^{3} + p^{2} T^{4} )^{2} \)
59$D_{4}$ \( ( 1 + 8 T + 62 T^{2} + 8 p T^{3} + p^{2} T^{4} )^{2} \)
61$C_2^2:C_4$ \( 1 - 48 T^{2} + 7920 T^{4} - 48 p^{2} T^{6} + p^{4} T^{8} \)
67$D_{4}$ \( ( 1 - 8 T + 78 T^{2} - 8 p T^{3} + p^{2} T^{4} )^{2} \)
71$C_2^2:C_4$ \( 1 + 204 T^{2} + 18918 T^{4} + 204 p^{2} T^{6} + p^{4} T^{8} \)
73$C_2^2:C_4$ \( 1 + 192 T^{2} + 18624 T^{4} + 192 p^{2} T^{6} + p^{4} T^{8} \)
79$C_2^2:C_4$ \( 1 + 108 T^{2} + 13830 T^{4} + 108 p^{2} T^{6} + p^{4} T^{8} \)
83$D_{4}$ \( ( 1 - 8 T + 110 T^{2} - 8 p T^{3} + p^{2} T^{4} )^{2} \)
89$D_{4}$ \( ( 1 + 24 T + 320 T^{2} + 24 p T^{3} + p^{2} T^{4} )^{2} \)
97$C_2^2:C_4$ \( 1 + 288 T^{2} + 37632 T^{4} + 288 p^{2} T^{6} + p^{4} T^{8} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.47851006679254370843630862836, −5.93412208411902139274732195881, −5.91109262615766237941877015562, −5.85663006438876962859446808375, −5.38563819473272094834047403173, −5.06972689253680995906587776619, −4.90648667999292764884640040598, −4.89399306412213036626766665324, −4.79971642056925792004354375653, −4.29654631847430620736188859772, −4.28346123551140393892427555888, −4.07304138156508008277957963273, −3.89838175334764632466476978928, −3.47508501592036801709622007331, −3.17458327485022561324395143996, −3.01285051744317229979520709658, −2.99649124167832676873437049150, −1.91343348933356567842923015877, −1.90511377290118829918573787841, −1.87791294555356211329871204724, −1.68739395980479503988778820148, −1.07350905354962134852073729317, −0.805267071742919327659234690731, −0.47854134364188046178984894479, −0.38849266124131315326377670172, 0.38849266124131315326377670172, 0.47854134364188046178984894479, 0.805267071742919327659234690731, 1.07350905354962134852073729317, 1.68739395980479503988778820148, 1.87791294555356211329871204724, 1.90511377290118829918573787841, 1.91343348933356567842923015877, 2.99649124167832676873437049150, 3.01285051744317229979520709658, 3.17458327485022561324395143996, 3.47508501592036801709622007331, 3.89838175334764632466476978928, 4.07304138156508008277957963273, 4.28346123551140393892427555888, 4.29654631847430620736188859772, 4.79971642056925792004354375653, 4.89399306412213036626766665324, 4.90648667999292764884640040598, 5.06972689253680995906587776619, 5.38563819473272094834047403173, 5.85663006438876962859446808375, 5.91109262615766237941877015562, 5.93412208411902139274732195881, 6.47851006679254370843630862836

Graph of the $Z$-function along the critical line