Properties

Label 4-2600e2-1.1-c0e2-0-5
Degree $4$
Conductor $6760000$
Sign $1$
Analytic cond. $1.68368$
Root an. cond. $1.13910$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4-s + 9-s + 16-s − 4·31-s − 36-s + 49-s − 64-s + 2·71-s − 2·109-s + 2·121-s + 4·124-s + 127-s + 131-s + 137-s + 139-s + 144-s + 149-s + 151-s + 157-s + 163-s + 167-s − 169-s + 173-s + 179-s + 181-s + 191-s + 193-s + ⋯
L(s)  = 1  − 4-s + 9-s + 16-s − 4·31-s − 36-s + 49-s − 64-s + 2·71-s − 2·109-s + 2·121-s + 4·124-s + 127-s + 131-s + 137-s + 139-s + 144-s + 149-s + 151-s + 157-s + 163-s + 167-s − 169-s + 173-s + 179-s + 181-s + 191-s + 193-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6760000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6760000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(6760000\)    =    \(2^{6} \cdot 5^{4} \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(1.68368\)
Root analytic conductor: \(1.13910\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 6760000,\ (\ :0, 0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.9382726912\)
\(L(\frac12)\) \(\approx\) \(0.9382726912\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 + T^{2} \)
5 \( 1 \)
13$C_2$ \( 1 + T^{2} \)
good3$C_2^2$ \( 1 - T^{2} + T^{4} \)
7$C_2^2$ \( 1 - T^{2} + T^{4} \)
11$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
17$C_2^2$ \( 1 - T^{2} + T^{4} \)
19$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
23$C_2$ \( ( 1 + T^{2} )^{2} \)
29$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
31$C_1$ \( ( 1 + T )^{4} \)
37$C_2^2$ \( 1 - T^{2} + T^{4} \)
41$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
43$C_2^2$ \( 1 - T^{2} + T^{4} \)
47$C_2^2$ \( 1 - T^{2} + T^{4} \)
53$C_2$ \( ( 1 + T^{2} )^{2} \)
59$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
61$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
67$C_2$ \( ( 1 + T^{2} )^{2} \)
71$C_2$ \( ( 1 - T + T^{2} )^{2} \)
73$C_2$ \( ( 1 + T^{2} )^{2} \)
79$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
83$C_2$ \( ( 1 + T^{2} )^{2} \)
89$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
97$C_2$ \( ( 1 + T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.309858786027913465307337564615, −8.965143348731152654901595631742, −8.575401925430477705499808454035, −7.962780757441523473655793668422, −7.929221259602073935583366387689, −7.28887371156706214148821550113, −6.91302117050544894852730875095, −6.90802042933717720255091797914, −5.95533086980217124120116354545, −5.73485165838452192604891428599, −5.32910483653826253440168043965, −5.01437435126731726376976657464, −4.38710127369997047439325810473, −4.14127237860610942799375375590, −3.53339647873019745774335370303, −3.52232375631695779717175110278, −2.64874601056027250164842693353, −1.87403535638343678969713244945, −1.62874756083702419636601617607, −0.66400420368426980752917054715, 0.66400420368426980752917054715, 1.62874756083702419636601617607, 1.87403535638343678969713244945, 2.64874601056027250164842693353, 3.52232375631695779717175110278, 3.53339647873019745774335370303, 4.14127237860610942799375375590, 4.38710127369997047439325810473, 5.01437435126731726376976657464, 5.32910483653826253440168043965, 5.73485165838452192604891428599, 5.95533086980217124120116354545, 6.90802042933717720255091797914, 6.91302117050544894852730875095, 7.28887371156706214148821550113, 7.929221259602073935583366387689, 7.962780757441523473655793668422, 8.575401925430477705499808454035, 8.965143348731152654901595631742, 9.309858786027913465307337564615

Graph of the $Z$-function along the critical line