| L(s) = 1 | − 2-s − 2·5-s − 4·7-s + 8-s + 3·9-s + 2·10-s − 4·11-s + 7·13-s + 4·14-s − 16-s − 3·17-s − 3·18-s + 4·22-s + 4·23-s − 7·25-s − 7·26-s + 29-s + 8·31-s + 3·34-s + 8·35-s − 3·37-s − 2·40-s + 9·41-s + 8·43-s − 6·45-s − 4·46-s − 16·47-s + ⋯ |
| L(s) = 1 | − 0.707·2-s − 0.894·5-s − 1.51·7-s + 0.353·8-s + 9-s + 0.632·10-s − 1.20·11-s + 1.94·13-s + 1.06·14-s − 1/4·16-s − 0.727·17-s − 0.707·18-s + 0.852·22-s + 0.834·23-s − 7/5·25-s − 1.37·26-s + 0.185·29-s + 1.43·31-s + 0.514·34-s + 1.35·35-s − 0.493·37-s − 0.316·40-s + 1.40·41-s + 1.21·43-s − 0.894·45-s − 0.589·46-s − 2.33·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 676 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 676 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.2888268393\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.2888268393\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−17.83917270532275816683966581168, −17.50799021433546123665920387934, −16.26623720731594403394103939384, −16.02911031406074142986274222501, −15.64886343391872673852350459186, −15.36446925692976134734598803910, −13.90625455460884407486336769723, −13.30524454945633262033065358911, −12.96336081772086273433631127787, −12.28901214179054392561517743721, −11.07879755217083448900979344953, −10.86528555775159191282929273534, −9.795272204285249139218264653633, −9.455354274309319704863065403827, −8.321664699454448960348307050955, −7.87360442404991356808984330857, −6.81910561654721702742782169449, −6.08899132613771253922925065251, −4.44784784558725094005357709970, −3.37568655586676820268862357978,
3.37568655586676820268862357978, 4.44784784558725094005357709970, 6.08899132613771253922925065251, 6.81910561654721702742782169449, 7.87360442404991356808984330857, 8.321664699454448960348307050955, 9.455354274309319704863065403827, 9.795272204285249139218264653633, 10.86528555775159191282929273534, 11.07879755217083448900979344953, 12.28901214179054392561517743721, 12.96336081772086273433631127787, 13.30524454945633262033065358911, 13.90625455460884407486336769723, 15.36446925692976134734598803910, 15.64886343391872673852350459186, 16.02911031406074142986274222501, 16.26623720731594403394103939384, 17.50799021433546123665920387934, 17.83917270532275816683966581168