Properties

Label 8-2592e4-1.1-c1e4-0-26
Degree $8$
Conductor $4.514\times 10^{13}$
Sign $1$
Analytic cond. $183505.$
Root an. cond. $4.54942$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·11-s − 8·13-s + 12·23-s − 3·25-s + 40·37-s + 20·47-s + 49-s + 8·59-s + 32·71-s − 12·73-s − 18·83-s − 14·97-s + 68·107-s + 8·109-s + 23·121-s + 127-s + 131-s + 137-s + 139-s + 16·143-s + 149-s + 151-s + 157-s + 163-s + 167-s + 42·169-s + 173-s + ⋯
L(s)  = 1  − 0.603·11-s − 2.21·13-s + 2.50·23-s − 3/5·25-s + 6.57·37-s + 2.91·47-s + 1/7·49-s + 1.04·59-s + 3.79·71-s − 1.40·73-s − 1.97·83-s − 1.42·97-s + 6.57·107-s + 0.766·109-s + 2.09·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 1.33·143-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 3.23·169-s + 0.0760·173-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{20} \cdot 3^{16}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{20} \cdot 3^{16}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{20} \cdot 3^{16}\)
Sign: $1$
Analytic conductor: \(183505.\)
Root analytic conductor: \(4.54942\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{20} \cdot 3^{16} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(5.217104047\)
\(L(\frac12)\) \(\approx\) \(5.217104047\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5$C_2^3$ \( 1 + 3 T^{2} - 16 T^{4} + 3 p^{2} T^{6} + p^{4} T^{8} \)
7$C_2^3$ \( 1 - T^{2} - 48 T^{4} - p^{2} T^{6} + p^{4} T^{8} \)
11$C_2^2$ \( ( 1 + T - 10 T^{2} + p T^{3} + p^{2} T^{4} )^{2} \)
13$C_2^2$ \( ( 1 + 4 T + 3 T^{2} + 4 p T^{3} + p^{2} T^{4} )^{2} \)
17$C_2$ \( ( 1 + p T^{2} )^{4} \)
19$C_2^2$ \( ( 1 - 14 T^{2} + p^{2} T^{4} )^{2} \)
23$C_2^2$ \( ( 1 - 6 T + 13 T^{2} - 6 p T^{3} + p^{2} T^{4} )^{2} \)
29$C_2^3$ \( 1 - 6 T^{2} - 805 T^{4} - 6 p^{2} T^{6} + p^{4} T^{8} \)
31$C_2^3$ \( 1 - 49 T^{2} + 1440 T^{4} - 49 p^{2} T^{6} + p^{4} T^{8} \)
37$C_2$ \( ( 1 - 10 T + p T^{2} )^{4} \)
41$C_2^3$ \( 1 - 30 T^{2} - 781 T^{4} - 30 p^{2} T^{6} + p^{4} T^{8} \)
43$C_2^3$ \( 1 - 34 T^{2} - 693 T^{4} - 34 p^{2} T^{6} + p^{4} T^{8} \)
47$C_2^2$ \( ( 1 - 10 T + 53 T^{2} - 10 p T^{3} + p^{2} T^{4} )^{2} \)
53$C_2^2$ \( ( 1 + 93 T^{2} + p^{2} T^{4} )^{2} \)
59$C_2^2$ \( ( 1 - 4 T - 43 T^{2} - 4 p T^{3} + p^{2} T^{4} )^{2} \)
61$C_2^2$ \( ( 1 - p T^{2} + p^{2} T^{4} )^{2} \)
67$C_2^3$ \( 1 - 82 T^{2} + 2235 T^{4} - 82 p^{2} T^{6} + p^{4} T^{8} \)
71$C_2$ \( ( 1 - 8 T + p T^{2} )^{4} \)
73$C_2$ \( ( 1 + 3 T + p T^{2} )^{4} \)
79$C_2^2$$\times$$C_2^2$ \( ( 1 - 18 T + 187 T^{2} - 18 p T^{3} + p^{2} T^{4} )( 1 + 18 T + 187 T^{2} + 18 p T^{3} + p^{2} T^{4} ) \)
83$C_2^2$ \( ( 1 + 9 T - 2 T^{2} + 9 p T^{3} + p^{2} T^{4} )^{2} \)
89$C_2^2$ \( ( 1 + 126 T^{2} + p^{2} T^{4} )^{2} \)
97$C_2^2$ \( ( 1 + 7 T - 48 T^{2} + 7 p T^{3} + p^{2} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.24529168814103502829748233192, −6.09915705861933772953636236383, −5.75737327333538372591264318711, −5.65030947506385510011315830108, −5.57979359843194714747805097218, −5.34121432691070845918174292140, −4.92620690427994051918874938635, −4.91826298786824211979870499475, −4.48904074832209216485787042667, −4.44863135133404490789666772261, −4.33183883921067075881604374366, −4.08495196972266975303787195601, −3.94846073397057183246952910627, −3.17796644283662085581490496269, −3.17681865538028980820722463136, −3.12371203391964638530795861330, −2.82811973858215806239206656138, −2.34252387284092740259132653578, −2.26878126027490913674364691779, −2.24978732367439604043979062366, −1.98737457987623921168783652039, −1.05405903061460403587325698342, −1.01041727365449291567429926171, −0.74984779901455562888970875210, −0.47050646583233183624933664408, 0.47050646583233183624933664408, 0.74984779901455562888970875210, 1.01041727365449291567429926171, 1.05405903061460403587325698342, 1.98737457987623921168783652039, 2.24978732367439604043979062366, 2.26878126027490913674364691779, 2.34252387284092740259132653578, 2.82811973858215806239206656138, 3.12371203391964638530795861330, 3.17681865538028980820722463136, 3.17796644283662085581490496269, 3.94846073397057183246952910627, 4.08495196972266975303787195601, 4.33183883921067075881604374366, 4.44863135133404490789666772261, 4.48904074832209216485787042667, 4.91826298786824211979870499475, 4.92620690427994051918874938635, 5.34121432691070845918174292140, 5.57979359843194714747805097218, 5.65030947506385510011315830108, 5.75737327333538372591264318711, 6.09915705861933772953636236383, 6.24529168814103502829748233192

Graph of the $Z$-function along the critical line