Properties

Degree 2
Conductor $ 3 \cdot 7 \cdot 11^{2} $
Sign $1$
Motivic weight 1
Primitive yes
Self-dual yes
Analytic rank 0

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  − 2.23·2-s − 3-s + 3.00·4-s − 0.618·5-s + 2.23·6-s − 7-s − 2.23·8-s + 9-s + 1.38·10-s − 3.00·12-s − 3.23·13-s + 2.23·14-s + 0.618·15-s − 0.999·16-s − 4.85·17-s − 2.23·18-s − 2.85·19-s − 1.85·20-s + 21-s + 4.38·23-s + 2.23·24-s − 4.61·25-s + 7.23·26-s − 27-s − 3.00·28-s + 6·29-s − 1.38·30-s + ⋯
L(s)  = 1  − 1.58·2-s − 0.577·3-s + 1.50·4-s − 0.276·5-s + 0.912·6-s − 0.377·7-s − 0.790·8-s + 0.333·9-s + 0.437·10-s − 0.866·12-s − 0.897·13-s + 0.597·14-s + 0.159·15-s − 0.249·16-s − 1.17·17-s − 0.527·18-s − 0.654·19-s − 0.414·20-s + 0.218·21-s + 0.913·23-s + 0.456·24-s − 0.923·25-s + 1.41·26-s − 0.192·27-s − 0.566·28-s + 1.11·29-s − 0.252·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2541 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2541 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

\( d \)  =  \(2\)
\( N \)  =  \(2541\)    =    \(3 \cdot 7 \cdot 11^{2}\)
\( \varepsilon \)  =  $1$
motivic weight  =  \(1\)
character  :  $\chi_{2541} (1, \cdot )$
primitive  :  yes
self-dual  :  yes
analytic rank  =  0
Selberg data  =  $(2,\ 2541,\ (\ :1/2),\ 1)$
$L(1)$  $\approx$  $0.2849916490$
$L(\frac12)$  $\approx$  $0.2849916490$
$L(\frac{3}{2})$   not available
$L(1)$   not available

Euler product

\[L(s) = \prod_{p \text{ prime}} F_p(p^{-s})^{-1} \]where, for $p \notin \{3,\;7,\;11\}$,\[F_p(T) = 1 - a_p T + p T^2 .\]If $p \in \{3,\;7,\;11\}$, then $F_p(T)$ is a polynomial of degree at most 1.
$p$$F_p(T)$
bad3 \( 1 + T \)
7 \( 1 + T \)
11 \( 1 \)
good2 \( 1 + 2.23T + 2T^{2} \)
5 \( 1 + 0.618T + 5T^{2} \)
13 \( 1 + 3.23T + 13T^{2} \)
17 \( 1 + 4.85T + 17T^{2} \)
19 \( 1 + 2.85T + 19T^{2} \)
23 \( 1 - 4.38T + 23T^{2} \)
29 \( 1 - 6T + 29T^{2} \)
31 \( 1 + 3.09T + 31T^{2} \)
37 \( 1 - 4.61T + 37T^{2} \)
41 \( 1 + 7.38T + 41T^{2} \)
43 \( 1 + 9.70T + 43T^{2} \)
47 \( 1 - 4.47T + 47T^{2} \)
53 \( 1 - 6.76T + 53T^{2} \)
59 \( 1 - 3.23T + 59T^{2} \)
61 \( 1 + 61T^{2} \)
67 \( 1 + 67T^{2} \)
71 \( 1 + 4.94T + 71T^{2} \)
73 \( 1 + 13.7T + 73T^{2} \)
79 \( 1 - 10T + 79T^{2} \)
83 \( 1 + 16.4T + 83T^{2} \)
89 \( 1 - 5.61T + 89T^{2} \)
97 \( 1 + 6T + 97T^{2} \)
show more
show less
\[\begin{aligned}L(s) = \prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\end{aligned}\]

Imaginary part of the first few zeros on the critical line

−8.848433022841399156531359095853, −8.355754819927098073687663906451, −7.34809756143244920901064055098, −6.90895612382047214695359970370, −6.18082924958431772662663023560, −4.99845124870622948749510710670, −4.18039010281958255531008494955, −2.76179934789303761200821768323, −1.78910380924120353574255154314, −0.42898484245146638831882434050, 0.42898484245146638831882434050, 1.78910380924120353574255154314, 2.76179934789303761200821768323, 4.18039010281958255531008494955, 4.99845124870622948749510710670, 6.18082924958431772662663023560, 6.90895612382047214695359970370, 7.34809756143244920901064055098, 8.355754819927098073687663906451, 8.848433022841399156531359095853

Graph of the $Z$-function along the critical line