Properties

Label 6-2535e3-1.1-c1e3-0-12
Degree $6$
Conductor $16290480375$
Sign $-1$
Analytic cond. $8294.02$
Root an. cond. $4.49911$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $3$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 3·3-s − 3·4-s + 3·5-s + 3·6-s + 2·7-s + 4·8-s + 6·9-s − 3·10-s − 3·11-s + 9·12-s − 2·14-s − 9·15-s + 3·16-s − 10·17-s − 6·18-s − 6·19-s − 9·20-s − 6·21-s + 3·22-s + 5·23-s − 12·24-s + 6·25-s − 10·27-s − 6·28-s + 29-s + 9·30-s + ⋯
L(s)  = 1  − 0.707·2-s − 1.73·3-s − 3/2·4-s + 1.34·5-s + 1.22·6-s + 0.755·7-s + 1.41·8-s + 2·9-s − 0.948·10-s − 0.904·11-s + 2.59·12-s − 0.534·14-s − 2.32·15-s + 3/4·16-s − 2.42·17-s − 1.41·18-s − 1.37·19-s − 2.01·20-s − 1.30·21-s + 0.639·22-s + 1.04·23-s − 2.44·24-s + 6/5·25-s − 1.92·27-s − 1.13·28-s + 0.185·29-s + 1.64·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{3} \cdot 5^{3} \cdot 13^{6}\right)^{s/2} \, \Gamma_{\C}(s)^{3} \, L(s)\cr=\mathstrut & -\,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{3} \cdot 5^{3} \cdot 13^{6}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{3} \, L(s)\cr=\mathstrut & -\,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(6\)
Conductor: \(3^{3} \cdot 5^{3} \cdot 13^{6}\)
Sign: $-1$
Analytic conductor: \(8294.02\)
Root analytic conductor: \(4.49911\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(3\)
Selberg data: \((6,\ 3^{3} \cdot 5^{3} \cdot 13^{6} ,\ ( \ : 1/2, 1/2, 1/2 ),\ -1 )\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3$C_1$ \( ( 1 + T )^{3} \)
5$C_1$ \( ( 1 - T )^{3} \)
13 \( 1 \)
good2$A_4\times C_2$ \( 1 + T + p^{2} T^{2} + 3 T^{3} + p^{3} T^{4} + p^{2} T^{5} + p^{3} T^{6} \)
7$A_4\times C_2$ \( 1 - 2 T + 20 T^{2} - 27 T^{3} + 20 p T^{4} - 2 p^{2} T^{5} + p^{3} T^{6} \)
11$C_2$ \( ( 1 + T + p T^{2} )^{3} \)
17$A_4\times C_2$ \( 1 + 10 T + 75 T^{2} + 348 T^{3} + 75 p T^{4} + 10 p^{2} T^{5} + p^{3} T^{6} \)
19$A_4\times C_2$ \( 1 + 6 T + 48 T^{2} + 187 T^{3} + 48 p T^{4} + 6 p^{2} T^{5} + p^{3} T^{6} \)
23$A_4\times C_2$ \( 1 - 5 T + 75 T^{2} - 231 T^{3} + 75 p T^{4} - 5 p^{2} T^{5} + p^{3} T^{6} \)
29$A_4\times C_2$ \( 1 - T + 43 T^{2} + 69 T^{3} + 43 p T^{4} - p^{2} T^{5} + p^{3} T^{6} \)
31$A_4\times C_2$ \( 1 - 3 T + 68 T^{2} - 215 T^{3} + 68 p T^{4} - 3 p^{2} T^{5} + p^{3} T^{6} \)
37$A_4\times C_2$ \( 1 - 5 T + 89 T^{2} - 273 T^{3} + 89 p T^{4} - 5 p^{2} T^{5} + p^{3} T^{6} \)
41$A_4\times C_2$ \( 1 + 22 T + 282 T^{2} + 2181 T^{3} + 282 p T^{4} + 22 p^{2} T^{5} + p^{3} T^{6} \)
43$A_4\times C_2$ \( 1 + 16 T + 212 T^{2} + 1515 T^{3} + 212 p T^{4} + 16 p^{2} T^{5} + p^{3} T^{6} \)
47$A_4\times C_2$ \( 1 - 12 T + 140 T^{2} - 1087 T^{3} + 140 p T^{4} - 12 p^{2} T^{5} + p^{3} T^{6} \)
53$A_4\times C_2$ \( 1 - 5 T + 67 T^{2} - 447 T^{3} + 67 p T^{4} - 5 p^{2} T^{5} + p^{3} T^{6} \)
59$A_4\times C_2$ \( 1 - 3 T + 89 T^{2} + 23 T^{3} + 89 p T^{4} - 3 p^{2} T^{5} + p^{3} T^{6} \)
61$A_4\times C_2$ \( 1 + 10 T + 102 T^{2} + 787 T^{3} + 102 p T^{4} + 10 p^{2} T^{5} + p^{3} T^{6} \)
67$A_4\times C_2$ \( 1 + 20 T + 318 T^{2} + 2849 T^{3} + 318 p T^{4} + 20 p^{2} T^{5} + p^{3} T^{6} \)
71$A_4\times C_2$ \( 1 - 6 T + 162 T^{2} - 545 T^{3} + 162 p T^{4} - 6 p^{2} T^{5} + p^{3} T^{6} \)
73$A_4\times C_2$ \( 1 - 2 T + 36 T^{2} + 451 T^{3} + 36 p T^{4} - 2 p^{2} T^{5} + p^{3} T^{6} \)
79$A_4\times C_2$ \( 1 + 2 T + 82 T^{2} + 539 T^{3} + 82 p T^{4} + 2 p^{2} T^{5} + p^{3} T^{6} \)
83$A_4\times C_2$ \( 1 - 27 T + 401 T^{2} - 4105 T^{3} + 401 p T^{4} - 27 p^{2} T^{5} + p^{3} T^{6} \)
89$A_4\times C_2$ \( 1 - 4 T + 186 T^{2} - 291 T^{3} + 186 p T^{4} - 4 p^{2} T^{5} + p^{3} T^{6} \)
97$A_4\times C_2$ \( 1 - 9 T + 66 T^{2} + 495 T^{3} + 66 p T^{4} - 9 p^{2} T^{5} + p^{3} T^{6} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{6} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.385021531681030757262889128798, −8.136709309712197690401334649658, −7.73571092440817019125064642193, −7.67911543210994216716026169044, −7.21383224542839236343697968962, −6.76395103304990348121644311631, −6.62428381059084084339818621672, −6.37336560752757877990376103268, −6.35523222557181913141604841870, −6.10822262304532670527591280914, −5.49238347787113414752154873342, −5.13278296632894632542990279075, −5.11958281189822046855103317155, −4.78706303183222893808563116355, −4.75901408992017927029275047645, −4.73147268119568970027292089316, −3.96625920283646726041518113664, −3.86300856561736973465135641827, −3.55505344744914323959901217104, −2.74953477905397220149311528273, −2.51294403224615397100309904774, −2.24782800739701030175330770637, −1.68788390320668760784852873942, −1.29868854289086909134817235358, −1.22994124126641937748704070121, 0, 0, 0, 1.22994124126641937748704070121, 1.29868854289086909134817235358, 1.68788390320668760784852873942, 2.24782800739701030175330770637, 2.51294403224615397100309904774, 2.74953477905397220149311528273, 3.55505344744914323959901217104, 3.86300856561736973465135641827, 3.96625920283646726041518113664, 4.73147268119568970027292089316, 4.75901408992017927029275047645, 4.78706303183222893808563116355, 5.11958281189822046855103317155, 5.13278296632894632542990279075, 5.49238347787113414752154873342, 6.10822262304532670527591280914, 6.35523222557181913141604841870, 6.37336560752757877990376103268, 6.62428381059084084339818621672, 6.76395103304990348121644311631, 7.21383224542839236343697968962, 7.67911543210994216716026169044, 7.73571092440817019125064642193, 8.136709309712197690401334649658, 8.385021531681030757262889128798

Graph of the $Z$-function along the critical line