Properties

Label 4-2520e2-1.1-c0e2-0-0
Degree $4$
Conductor $6350400$
Sign $1$
Analytic cond. $1.58166$
Root an. cond. $1.12144$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 5-s − 7-s + 8-s − 10-s − 3·11-s + 14-s − 16-s + 3·22-s − 3·31-s − 35-s + 40-s − 53-s − 3·55-s − 56-s + 59-s + 3·62-s + 64-s + 70-s + 2·73-s + 3·77-s − 79-s − 80-s − 3·88-s − 2·97-s − 2·101-s + 2·103-s + ⋯
L(s)  = 1  − 2-s + 5-s − 7-s + 8-s − 10-s − 3·11-s + 14-s − 16-s + 3·22-s − 3·31-s − 35-s + 40-s − 53-s − 3·55-s − 56-s + 59-s + 3·62-s + 64-s + 70-s + 2·73-s + 3·77-s − 79-s − 80-s − 3·88-s − 2·97-s − 2·101-s + 2·103-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6350400 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6350400 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(6350400\)    =    \(2^{6} \cdot 3^{4} \cdot 5^{2} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(1.58166\)
Root analytic conductor: \(1.12144\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 6350400,\ (\ :0, 0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.2495996073\)
\(L(\frac12)\) \(\approx\) \(0.2495996073\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 + T + T^{2} \)
3 \( 1 \)
5$C_2$ \( 1 - T + T^{2} \)
7$C_2$ \( 1 + T + T^{2} \)
good11$C_1$$\times$$C_2$ \( ( 1 + T )^{2}( 1 + T + T^{2} ) \)
13$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
17$C_2^2$ \( 1 - T^{2} + T^{4} \)
19$C_2^2$ \( 1 - T^{2} + T^{4} \)
23$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
29$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
31$C_1$$\times$$C_2$ \( ( 1 + T )^{2}( 1 + T + T^{2} ) \)
37$C_2^2$ \( 1 - T^{2} + T^{4} \)
41$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
43$C_2$ \( ( 1 + T^{2} )^{2} \)
47$C_2^2$ \( 1 - T^{2} + T^{4} \)
53$C_1$$\times$$C_2$ \( ( 1 + T )^{2}( 1 - T + T^{2} ) \)
59$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 + T + T^{2} ) \)
61$C_2^2$ \( 1 - T^{2} + T^{4} \)
67$C_2^2$ \( 1 - T^{2} + T^{4} \)
71$C_2$ \( ( 1 + T^{2} )^{2} \)
73$C_2$ \( ( 1 - T + T^{2} )^{2} \)
79$C_1$$\times$$C_2$ \( ( 1 + T )^{2}( 1 - T + T^{2} ) \)
83$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
89$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
97$C_2$ \( ( 1 + T + T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.632920543496502484663595866130, −8.941085060753119121150840365324, −8.606402666192640700344768862547, −8.120698976982002192957729464377, −7.71422151452433866373053179238, −7.67685506422168550048407575987, −7.00142651918653986204386683242, −6.83640181730218129581832489682, −6.19188885543868243695005092675, −5.58577881417783905808875067267, −5.53744930580630495810310083325, −5.10914910299549229702469384201, −4.77909387233683719618008975357, −3.93035864884599878931306877547, −3.64967509166395519374445727408, −2.83320836993812420942846545150, −2.65723026404817183797940640211, −1.98719967937186098026503117062, −1.63141028656279175230985336625, −0.37090590848857770032086575914, 0.37090590848857770032086575914, 1.63141028656279175230985336625, 1.98719967937186098026503117062, 2.65723026404817183797940640211, 2.83320836993812420942846545150, 3.64967509166395519374445727408, 3.93035864884599878931306877547, 4.77909387233683719618008975357, 5.10914910299549229702469384201, 5.53744930580630495810310083325, 5.58577881417783905808875067267, 6.19188885543868243695005092675, 6.83640181730218129581832489682, 7.00142651918653986204386683242, 7.67685506422168550048407575987, 7.71422151452433866373053179238, 8.120698976982002192957729464377, 8.606402666192640700344768862547, 8.941085060753119121150840365324, 9.632920543496502484663595866130

Graph of the $Z$-function along the critical line