Properties

Label 20-252e10-1.1-c8e10-0-1
Degree $20$
Conductor $1.033\times 10^{24}$
Sign $1$
Analytic cond. $1.30013\times 10^{20}$
Root an. cond. $10.1320$
Motivic weight $8$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.33e3·7-s + 3.75e4·11-s + 2.23e4·23-s + 1.80e6·25-s + 3.08e5·29-s − 5.47e6·37-s + 1.17e6·43-s − 2.98e5·49-s + 1.29e5·53-s − 5.72e6·67-s − 2.69e7·71-s − 8.78e7·77-s − 1.81e8·79-s + 7.40e8·107-s − 2.57e8·109-s − 5.11e8·113-s − 8.42e8·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s − 5.23e7·161-s + 163-s + 167-s + ⋯
L(s)  = 1  − 0.973·7-s + 2.56·11-s + 0.0799·23-s + 4.61·25-s + 0.436·29-s − 2.91·37-s + 0.344·43-s − 0.0518·49-s + 0.0163·53-s − 0.283·67-s − 1.06·71-s − 2.50·77-s − 4.65·79-s + 5.64·107-s − 1.82·109-s − 3.13·113-s − 3.93·121-s − 0.0778·161-s + 4.66·169-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{20} \cdot 3^{20} \cdot 7^{10}\right)^{s/2} \, \Gamma_{\C}(s)^{10} \, L(s)\cr=\mathstrut & \,\Lambda(9-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{20} \cdot 3^{20} \cdot 7^{10}\right)^{s/2} \, \Gamma_{\C}(s+4)^{10} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(20\)
Conductor: \(2^{20} \cdot 3^{20} \cdot 7^{10}\)
Sign: $1$
Analytic conductor: \(1.30013\times 10^{20}\)
Root analytic conductor: \(10.1320\)
Motivic weight: \(8\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((20,\ 2^{20} \cdot 3^{20} \cdot 7^{10} ,\ ( \ : [4]^{10} ),\ 1 )\)

Particular Values

\(L(\frac{9}{2})\) \(\approx\) \(70.25093749\)
\(L(\frac12)\) \(\approx\) \(70.25093749\)
\(L(5)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 + 334 p T + 117657 p^{2} T^{2} + 174576 p^{6} T^{3} + 222529494 p^{6} T^{4} + 172560924 p^{10} T^{5} + 222529494 p^{14} T^{6} + 174576 p^{22} T^{7} + 117657 p^{26} T^{8} + 334 p^{33} T^{9} + p^{40} T^{10} \)
good5 \( 1 - 1801126 T^{2} + 1654569812049 T^{4} - 1045330593107636832 T^{6} + \)\(42\!\cdots\!26\)\( p^{3} T^{8} - \)\(35\!\cdots\!32\)\( p^{4} T^{10} + \)\(42\!\cdots\!26\)\( p^{19} T^{12} - 1045330593107636832 p^{32} T^{14} + 1654569812049 p^{48} T^{16} - 1801126 p^{64} T^{18} + p^{80} T^{20} \)
11 \( ( 1 - 18798 T + 951398579 T^{2} - 14346554158212 T^{3} + 394798313359326220 T^{4} - \)\(44\!\cdots\!60\)\( T^{5} + 394798313359326220 p^{8} T^{6} - 14346554158212 p^{16} T^{7} + 951398579 p^{24} T^{8} - 18798 p^{32} T^{9} + p^{40} T^{10} )^{2} \)
13 \( 1 - 3808243978 T^{2} + 6683878414560511917 T^{4} - \)\(80\!\cdots\!68\)\( T^{6} + \)\(84\!\cdots\!06\)\( T^{8} - \)\(75\!\cdots\!28\)\( T^{10} + \)\(84\!\cdots\!06\)\( p^{16} T^{12} - \)\(80\!\cdots\!68\)\( p^{32} T^{14} + 6683878414560511917 p^{48} T^{16} - 3808243978 p^{64} T^{18} + p^{80} T^{20} \)
17 \( 1 - 36719622742 T^{2} + \)\(74\!\cdots\!93\)\( T^{4} - \)\(10\!\cdots\!52\)\( T^{6} + \)\(10\!\cdots\!94\)\( T^{8} - \)\(80\!\cdots\!00\)\( T^{10} + \)\(10\!\cdots\!94\)\( p^{16} T^{12} - \)\(10\!\cdots\!52\)\( p^{32} T^{14} + \)\(74\!\cdots\!93\)\( p^{48} T^{16} - 36719622742 p^{64} T^{18} + p^{80} T^{20} \)
19 \( 1 - 76037725090 T^{2} + \)\(31\!\cdots\!33\)\( T^{4} - \)\(94\!\cdots\!76\)\( T^{6} + \)\(22\!\cdots\!34\)\( T^{8} - \)\(41\!\cdots\!32\)\( T^{10} + \)\(22\!\cdots\!34\)\( p^{16} T^{12} - \)\(94\!\cdots\!76\)\( p^{32} T^{14} + \)\(31\!\cdots\!33\)\( p^{48} T^{16} - 76037725090 p^{64} T^{18} + p^{80} T^{20} \)
23 \( ( 1 - 11190 T + 126500339699 T^{2} + 6299007423824508 T^{3} + \)\(16\!\cdots\!52\)\( T^{4} + \)\(12\!\cdots\!28\)\( T^{5} + \)\(16\!\cdots\!52\)\( p^{8} T^{6} + 6299007423824508 p^{16} T^{7} + 126500339699 p^{24} T^{8} - 11190 p^{32} T^{9} + p^{40} T^{10} )^{2} \)
29 \( ( 1 - 154446 T + 1138790023229 T^{2} - 397550561533808136 T^{3} + \)\(78\!\cdots\!14\)\( T^{4} - \)\(31\!\cdots\!28\)\( T^{5} + \)\(78\!\cdots\!14\)\( p^{8} T^{6} - 397550561533808136 p^{16} T^{7} + 1138790023229 p^{24} T^{8} - 154446 p^{32} T^{9} + p^{40} T^{10} )^{2} \)
31 \( 1 - 5199410804650 T^{2} + \)\(11\!\cdots\!37\)\( T^{4} - \)\(14\!\cdots\!44\)\( T^{6} + \)\(11\!\cdots\!22\)\( T^{8} - \)\(84\!\cdots\!40\)\( T^{10} + \)\(11\!\cdots\!22\)\( p^{16} T^{12} - \)\(14\!\cdots\!44\)\( p^{32} T^{14} + \)\(11\!\cdots\!37\)\( p^{48} T^{16} - 5199410804650 p^{64} T^{18} + p^{80} T^{20} \)
37 \( ( 1 + 2735554 T + 9873113449713 T^{2} + 7881485694642506688 T^{3} + \)\(12\!\cdots\!54\)\( T^{4} - \)\(20\!\cdots\!32\)\( T^{5} + \)\(12\!\cdots\!54\)\( p^{8} T^{6} + 7881485694642506688 p^{16} T^{7} + 9873113449713 p^{24} T^{8} + 2735554 p^{32} T^{9} + p^{40} T^{10} )^{2} \)
41 \( 1 - 34206366782710 T^{2} + \)\(63\!\cdots\!09\)\( T^{4} - \)\(86\!\cdots\!96\)\( T^{6} + \)\(91\!\cdots\!82\)\( T^{8} - \)\(79\!\cdots\!52\)\( T^{10} + \)\(91\!\cdots\!82\)\( p^{16} T^{12} - \)\(86\!\cdots\!96\)\( p^{32} T^{14} + \)\(63\!\cdots\!09\)\( p^{48} T^{16} - 34206366782710 p^{64} T^{18} + p^{80} T^{20} \)
43 \( ( 1 - 588662 T + 26723095003977 T^{2} - 22492698026016018864 T^{3} + \)\(44\!\cdots\!58\)\( T^{4} - \)\(52\!\cdots\!56\)\( T^{5} + \)\(44\!\cdots\!58\)\( p^{8} T^{6} - 22492698026016018864 p^{16} T^{7} + 26723095003977 p^{24} T^{8} - 588662 p^{32} T^{9} + p^{40} T^{10} )^{2} \)
47 \( 1 - 40671321614314 T^{2} + \)\(47\!\cdots\!85\)\( T^{4} - \)\(97\!\cdots\!08\)\( p T^{6} + \)\(60\!\cdots\!50\)\( T^{8} - \)\(25\!\cdots\!44\)\( T^{10} + \)\(60\!\cdots\!50\)\( p^{16} T^{12} - \)\(97\!\cdots\!08\)\( p^{33} T^{14} + \)\(47\!\cdots\!85\)\( p^{48} T^{16} - 40671321614314 p^{64} T^{18} + p^{80} T^{20} \)
53 \( ( 1 - 64566 T + 109877569098701 T^{2} - \)\(14\!\cdots\!88\)\( T^{3} + \)\(10\!\cdots\!86\)\( T^{4} - \)\(11\!\cdots\!24\)\( T^{5} + \)\(10\!\cdots\!86\)\( p^{8} T^{6} - \)\(14\!\cdots\!88\)\( p^{16} T^{7} + 109877569098701 p^{24} T^{8} - 64566 p^{32} T^{9} + p^{40} T^{10} )^{2} \)
59 \( 1 - 719850081974554 T^{2} + \)\(27\!\cdots\!33\)\( T^{4} - \)\(74\!\cdots\!44\)\( T^{6} + \)\(15\!\cdots\!78\)\( T^{8} - \)\(24\!\cdots\!40\)\( T^{10} + \)\(15\!\cdots\!78\)\( p^{16} T^{12} - \)\(74\!\cdots\!44\)\( p^{32} T^{14} + \)\(27\!\cdots\!33\)\( p^{48} T^{16} - 719850081974554 p^{64} T^{18} + p^{80} T^{20} \)
61 \( 1 - 879605222098522 T^{2} + \)\(36\!\cdots\!45\)\( T^{4} - \)\(92\!\cdots\!60\)\( T^{6} + \)\(16\!\cdots\!90\)\( T^{8} - \)\(29\!\cdots\!96\)\( T^{10} + \)\(16\!\cdots\!90\)\( p^{16} T^{12} - \)\(92\!\cdots\!60\)\( p^{32} T^{14} + \)\(36\!\cdots\!45\)\( p^{48} T^{16} - 879605222098522 p^{64} T^{18} + p^{80} T^{20} \)
67 \( ( 1 + 2861186 T + 330082766774289 T^{2} + \)\(72\!\cdots\!28\)\( T^{3} + \)\(30\!\cdots\!10\)\( T^{4} + \)\(61\!\cdots\!12\)\( T^{5} + \)\(30\!\cdots\!10\)\( p^{8} T^{6} + \)\(72\!\cdots\!28\)\( p^{16} T^{7} + 330082766774289 p^{24} T^{8} + 2861186 p^{32} T^{9} + p^{40} T^{10} )^{2} \)
71 \( ( 1 + 13492770 T + 2606256464420867 T^{2} + \)\(29\!\cdots\!48\)\( T^{3} + \)\(30\!\cdots\!20\)\( T^{4} + \)\(26\!\cdots\!68\)\( T^{5} + \)\(30\!\cdots\!20\)\( p^{8} T^{6} + \)\(29\!\cdots\!48\)\( p^{16} T^{7} + 2606256464420867 p^{24} T^{8} + 13492770 p^{32} T^{9} + p^{40} T^{10} )^{2} \)
73 \( 1 - 6341686899316858 T^{2} + \)\(18\!\cdots\!45\)\( T^{4} - \)\(35\!\cdots\!68\)\( T^{6} + \)\(45\!\cdots\!50\)\( T^{8} - \)\(42\!\cdots\!60\)\( T^{10} + \)\(45\!\cdots\!50\)\( p^{16} T^{12} - \)\(35\!\cdots\!68\)\( p^{32} T^{14} + \)\(18\!\cdots\!45\)\( p^{48} T^{16} - 6341686899316858 p^{64} T^{18} + p^{80} T^{20} \)
79 \( ( 1 + 90598778 T + 8046771666605457 T^{2} + \)\(42\!\cdots\!12\)\( T^{3} + \)\(22\!\cdots\!38\)\( T^{4} + \)\(85\!\cdots\!92\)\( T^{5} + \)\(22\!\cdots\!38\)\( p^{8} T^{6} + \)\(42\!\cdots\!12\)\( p^{16} T^{7} + 8046771666605457 p^{24} T^{8} + 90598778 p^{32} T^{9} + p^{40} T^{10} )^{2} \)
83 \( 1 - 19278785649623290 T^{2} + \)\(17\!\cdots\!85\)\( T^{4} - \)\(95\!\cdots\!28\)\( T^{6} + \)\(35\!\cdots\!42\)\( T^{8} - \)\(95\!\cdots\!00\)\( T^{10} + \)\(35\!\cdots\!42\)\( p^{16} T^{12} - \)\(95\!\cdots\!28\)\( p^{32} T^{14} + \)\(17\!\cdots\!85\)\( p^{48} T^{16} - 19278785649623290 p^{64} T^{18} + p^{80} T^{20} \)
89 \( 1 - 28192651452869014 T^{2} + \)\(36\!\cdots\!61\)\( T^{4} - \)\(29\!\cdots\!64\)\( T^{6} + \)\(17\!\cdots\!06\)\( T^{8} - \)\(75\!\cdots\!80\)\( T^{10} + \)\(17\!\cdots\!06\)\( p^{16} T^{12} - \)\(29\!\cdots\!64\)\( p^{32} T^{14} + \)\(36\!\cdots\!61\)\( p^{48} T^{16} - 28192651452869014 p^{64} T^{18} + p^{80} T^{20} \)
97 \( 1 - 70135963279762234 T^{2} + \)\(22\!\cdots\!17\)\( T^{4} - \)\(44\!\cdots\!04\)\( T^{6} + \)\(60\!\cdots\!78\)\( p T^{8} - \)\(54\!\cdots\!80\)\( T^{10} + \)\(60\!\cdots\!78\)\( p^{17} T^{12} - \)\(44\!\cdots\!04\)\( p^{32} T^{14} + \)\(22\!\cdots\!17\)\( p^{48} T^{16} - 70135963279762234 p^{64} T^{18} + p^{80} T^{20} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{20} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−3.21670516481154718752167765957, −3.16830466536225787175846964893, −3.03862389457153237157468075399, −2.95155328580253839359918339424, −2.67679118729125045170126430885, −2.57358860101295428783252626609, −2.56395256792685622195629346949, −2.42254089222897478084182593499, −2.22777023423081566823790268043, −1.98764427479838984074911140217, −1.79046517083128379681652593421, −1.66139711101016137842885020401, −1.65908074355797062174751624111, −1.49216885378794838821131538181, −1.40497673363973236338315403153, −1.36865833564717145674856904974, −1.27316070573104311789264489113, −1.03324897832113609116950078097, −0.75206890247051474845287136309, −0.71532861163780227611360499831, −0.55296546447058148020817538985, −0.50434979226513152010980738462, −0.47116182001538848507232076734, −0.30147812514827534527206283393, −0.23355501312277267329648222659, 0.23355501312277267329648222659, 0.30147812514827534527206283393, 0.47116182001538848507232076734, 0.50434979226513152010980738462, 0.55296546447058148020817538985, 0.71532861163780227611360499831, 0.75206890247051474845287136309, 1.03324897832113609116950078097, 1.27316070573104311789264489113, 1.36865833564717145674856904974, 1.40497673363973236338315403153, 1.49216885378794838821131538181, 1.65908074355797062174751624111, 1.66139711101016137842885020401, 1.79046517083128379681652593421, 1.98764427479838984074911140217, 2.22777023423081566823790268043, 2.42254089222897478084182593499, 2.56395256792685622195629346949, 2.57358860101295428783252626609, 2.67679118729125045170126430885, 2.95155328580253839359918339424, 3.03862389457153237157468075399, 3.16830466536225787175846964893, 3.21670516481154718752167765957

Graph of the $Z$-function along the critical line

Plot not available for L-functions of degree greater than 10.