Properties

Label 8-5e8-1.1-c33e4-0-0
Degree $8$
Conductor $390625$
Sign $1$
Analytic cond. $8.84553\times 10^{8}$
Root an. cond. $13.1322$
Motivic weight $33$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.52e9·4-s + 1.91e16·9-s + 2.67e17·11-s + 3.80e19·16-s + 2.72e21·19-s + 3.34e24·29-s − 1.24e25·31-s + 4.83e25·36-s + 5.55e26·41-s + 6.76e26·44-s + 1.29e28·49-s + 6.11e29·59-s − 1.14e28·61-s + 3.62e29·64-s − 5.33e30·71-s + 6.87e30·76-s + 1.70e31·79-s + 2.14e32·81-s − 2.65e32·89-s + 5.12e33·99-s + 1.36e33·101-s − 9.95e33·109-s + 8.46e33·116-s − 3.79e33·121-s − 3.15e34·124-s + 127-s + 131-s + ⋯
L(s)  = 1  + 0.294·4-s + 3.44·9-s + 1.75·11-s + 0.515·16-s + 2.16·19-s + 2.48·29-s − 3.08·31-s + 1.01·36-s + 1.35·41-s + 0.516·44-s + 1.67·49-s + 3.69·59-s − 0.0400·61-s + 0.572·64-s − 1.51·71-s + 0.636·76-s + 0.834·79-s + 6.94·81-s − 1.81·89-s + 6.04·99-s + 1.15·101-s − 2.40·109-s + 0.731·116-s − 0.163·121-s − 0.906·124-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 390625 ^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr =\mathstrut & \, \Lambda(34-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 390625 ^{s/2} \, \Gamma_{\C}(s+33/2)^{4} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(390625\)    =    \(5^{8}\)
Sign: $1$
Analytic conductor: \(8.84553\times 10^{8}\)
Root analytic conductor: \(13.1322\)
Motivic weight: \(33\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 390625,\ (\ :33/2, 33/2, 33/2, 33/2),\ 1)\)

Particular Values

\(L(17)\) \(\approx\) \(15.96775858\)
\(L(\frac12)\) \(\approx\) \(15.96775858\)
\(L(\frac{35}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad5 \( 1 \)
good2$D_4\times C_2$ \( 1 - 9873575 p^{8} T^{2} - 1888135309767 p^{24} T^{4} - 9873575 p^{74} T^{6} + p^{132} T^{8} \)
3$D_4\times C_2$ \( 1 - 26254126321100 p^{6} T^{2} + \)\(39\!\cdots\!22\)\( p^{18} T^{4} - 26254126321100 p^{72} T^{6} + p^{132} T^{8} \)
7$D_4\times C_2$ \( 1 - \)\(26\!\cdots\!00\)\( p^{2} T^{2} + \)\(21\!\cdots\!98\)\( p^{8} T^{4} - \)\(26\!\cdots\!00\)\( p^{68} T^{6} + p^{132} T^{8} \)
11$D_{4}$ \( ( 1 - 12170165040174024 p T + \)\(23\!\cdots\!66\)\( p^{2} T^{2} - 12170165040174024 p^{34} T^{3} + p^{66} T^{4} )^{2} \)
13$D_4\times C_2$ \( 1 - \)\(10\!\cdots\!00\)\( p^{2} T^{2} + \)\(30\!\cdots\!02\)\( p^{6} T^{4} - \)\(10\!\cdots\!00\)\( p^{68} T^{6} + p^{132} T^{8} \)
17$D_4\times C_2$ \( 1 + \)\(15\!\cdots\!00\)\( T^{2} + \)\(95\!\cdots\!42\)\( p^{2} T^{4} + \)\(15\!\cdots\!00\)\( p^{66} T^{6} + p^{132} T^{8} \)
19$D_{4}$ \( ( 1 - \)\(13\!\cdots\!00\)\( T + \)\(17\!\cdots\!22\)\( p T^{2} - \)\(13\!\cdots\!00\)\( p^{33} T^{3} + p^{66} T^{4} )^{2} \)
23$D_4\times C_2$ \( 1 - \)\(24\!\cdots\!00\)\( T^{2} + \)\(52\!\cdots\!82\)\( p^{2} T^{4} - \)\(24\!\cdots\!00\)\( p^{66} T^{6} + p^{132} T^{8} \)
29$D_{4}$ \( ( 1 - \)\(57\!\cdots\!00\)\( p T + \)\(46\!\cdots\!58\)\( p^{2} T^{2} - \)\(57\!\cdots\!00\)\( p^{34} T^{3} + p^{66} T^{4} )^{2} \)
31$D_{4}$ \( ( 1 + \)\(20\!\cdots\!36\)\( p T + \)\(30\!\cdots\!86\)\( p^{2} T^{2} + \)\(20\!\cdots\!36\)\( p^{34} T^{3} + p^{66} T^{4} )^{2} \)
37$D_4\times C_2$ \( 1 - \)\(16\!\cdots\!00\)\( T^{2} + \)\(12\!\cdots\!18\)\( T^{4} - \)\(16\!\cdots\!00\)\( p^{66} T^{6} + p^{132} T^{8} \)
41$D_{4}$ \( ( 1 - \)\(27\!\cdots\!44\)\( T + \)\(22\!\cdots\!26\)\( T^{2} - \)\(27\!\cdots\!44\)\( p^{33} T^{3} + p^{66} T^{4} )^{2} \)
43$D_4\times C_2$ \( 1 - \)\(48\!\cdots\!00\)\( T^{2} - \)\(10\!\cdots\!02\)\( T^{4} - \)\(48\!\cdots\!00\)\( p^{66} T^{6} + p^{132} T^{8} \)
47$D_4\times C_2$ \( 1 - \)\(45\!\cdots\!00\)\( T^{2} + \)\(95\!\cdots\!58\)\( T^{4} - \)\(45\!\cdots\!00\)\( p^{66} T^{6} + p^{132} T^{8} \)
53$D_4\times C_2$ \( 1 - \)\(18\!\cdots\!00\)\( T^{2} + \)\(17\!\cdots\!58\)\( T^{4} - \)\(18\!\cdots\!00\)\( p^{66} T^{6} + p^{132} T^{8} \)
59$D_{4}$ \( ( 1 - \)\(30\!\cdots\!00\)\( T + \)\(77\!\cdots\!58\)\( T^{2} - \)\(30\!\cdots\!00\)\( p^{33} T^{3} + p^{66} T^{4} )^{2} \)
61$D_{4}$ \( ( 1 + \)\(57\!\cdots\!36\)\( T + \)\(16\!\cdots\!86\)\( T^{2} + \)\(57\!\cdots\!36\)\( p^{33} T^{3} + p^{66} T^{4} )^{2} \)
67$D_4\times C_2$ \( 1 - \)\(58\!\cdots\!00\)\( T^{2} + \)\(14\!\cdots\!38\)\( T^{4} - \)\(58\!\cdots\!00\)\( p^{66} T^{6} + p^{132} T^{8} \)
71$D_{4}$ \( ( 1 + \)\(26\!\cdots\!76\)\( T + \)\(22\!\cdots\!66\)\( T^{2} + \)\(26\!\cdots\!76\)\( p^{33} T^{3} + p^{66} T^{4} )^{2} \)
73$D_4\times C_2$ \( 1 - \)\(37\!\cdots\!00\)\( T^{2} + \)\(22\!\cdots\!78\)\( T^{4} - \)\(37\!\cdots\!00\)\( p^{66} T^{6} + p^{132} T^{8} \)
79$D_{4}$ \( ( 1 - \)\(85\!\cdots\!00\)\( T + \)\(85\!\cdots\!78\)\( T^{2} - \)\(85\!\cdots\!00\)\( p^{33} T^{3} + p^{66} T^{4} )^{2} \)
83$D_4\times C_2$ \( 1 - \)\(66\!\cdots\!00\)\( T^{2} + \)\(19\!\cdots\!38\)\( T^{4} - \)\(66\!\cdots\!00\)\( p^{66} T^{6} + p^{132} T^{8} \)
89$D_{4}$ \( ( 1 + \)\(13\!\cdots\!00\)\( T + \)\(47\!\cdots\!38\)\( T^{2} + \)\(13\!\cdots\!00\)\( p^{33} T^{3} + p^{66} T^{4} )^{2} \)
97$D_4\times C_2$ \( 1 - \)\(70\!\cdots\!00\)\( T^{2} + \)\(34\!\cdots\!58\)\( T^{4} - \)\(70\!\cdots\!00\)\( p^{66} T^{6} + p^{132} T^{8} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.42643418739594355350047933479, −7.01283143231191852436439322892, −6.95320191734799576983374617497, −6.52073576851840968158247973157, −6.44954667074274223118465155057, −5.94057826848992868277443194776, −5.36236872423600023931550743743, −5.31248398465302009492686864020, −5.18605420308471064939932757654, −4.43730711573230299268352256426, −4.30592944987151372285920308095, −4.18562675086109187871626062473, −3.74067515513565405365706615506, −3.60001395140453920284843399498, −3.50746022152091158879019733381, −2.72423542890499863245897275430, −2.66075507469925669054284849425, −2.19966231801485240598957879163, −1.74554174370435379989627101769, −1.70607888546296212809527741994, −1.13266830489321155152831898329, −1.07153670297011045903868857601, −1.06578092453934911451802601196, −0.804767480488882017166037510230, −0.23478862722530027689647920418, 0.23478862722530027689647920418, 0.804767480488882017166037510230, 1.06578092453934911451802601196, 1.07153670297011045903868857601, 1.13266830489321155152831898329, 1.70607888546296212809527741994, 1.74554174370435379989627101769, 2.19966231801485240598957879163, 2.66075507469925669054284849425, 2.72423542890499863245897275430, 3.50746022152091158879019733381, 3.60001395140453920284843399498, 3.74067515513565405365706615506, 4.18562675086109187871626062473, 4.30592944987151372285920308095, 4.43730711573230299268352256426, 5.18605420308471064939932757654, 5.31248398465302009492686864020, 5.36236872423600023931550743743, 5.94057826848992868277443194776, 6.44954667074274223118465155057, 6.52073576851840968158247973157, 6.95320191734799576983374617497, 7.01283143231191852436439322892, 7.42643418739594355350047933479

Graph of the $Z$-function along the critical line