Properties

Label 2-2496-12.11-c1-0-7
Degree $2$
Conductor $2496$
Sign $-0.577 - 0.816i$
Analytic cond. $19.9306$
Root an. cond. $4.46437$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1 − 1.41i)3-s + 1.41i·5-s + 4.24i·7-s + (−1.00 + 2.82i)9-s − 13-s + (2.00 − 1.41i)15-s − 5.65i·17-s + 4.24i·19-s + (6 − 4.24i)21-s + 6·23-s + 2.99·25-s + (5.00 − 1.41i)27-s − 2.82i·29-s + 4.24i·31-s − 6·35-s + ⋯
L(s)  = 1  + (−0.577 − 0.816i)3-s + 0.632i·5-s + 1.60i·7-s + (−0.333 + 0.942i)9-s − 0.277·13-s + (0.516 − 0.365i)15-s − 1.37i·17-s + 0.973i·19-s + (1.30 − 0.925i)21-s + 1.25·23-s + 0.599·25-s + (0.962 − 0.272i)27-s − 0.525i·29-s + 0.762i·31-s − 1.01·35-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2496 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.577 - 0.816i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2496 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.577 - 0.816i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2496\)    =    \(2^{6} \cdot 3 \cdot 13\)
Sign: $-0.577 - 0.816i$
Analytic conductor: \(19.9306\)
Root analytic conductor: \(4.46437\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{2496} (1535, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 2496,\ (\ :1/2),\ -0.577 - 0.816i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.8460148157\)
\(L(\frac12)\) \(\approx\) \(0.8460148157\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + (1 + 1.41i)T \)
13 \( 1 + T \)
good5 \( 1 - 1.41iT - 5T^{2} \)
7 \( 1 - 4.24iT - 7T^{2} \)
11 \( 1 + 11T^{2} \)
17 \( 1 + 5.65iT - 17T^{2} \)
19 \( 1 - 4.24iT - 19T^{2} \)
23 \( 1 - 6T + 23T^{2} \)
29 \( 1 + 2.82iT - 29T^{2} \)
31 \( 1 - 4.24iT - 31T^{2} \)
37 \( 1 + 2T + 37T^{2} \)
41 \( 1 + 1.41iT - 41T^{2} \)
43 \( 1 - 8.48iT - 43T^{2} \)
47 \( 1 + 12T + 47T^{2} \)
53 \( 1 - 5.65iT - 53T^{2} \)
59 \( 1 + 59T^{2} \)
61 \( 1 + 8T + 61T^{2} \)
67 \( 1 - 4.24iT - 67T^{2} \)
71 \( 1 + 12T + 71T^{2} \)
73 \( 1 - 2T + 73T^{2} \)
79 \( 1 - 8.48iT - 79T^{2} \)
83 \( 1 - 12T + 83T^{2} \)
89 \( 1 - 7.07iT - 89T^{2} \)
97 \( 1 + 10T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.115927017210107657419112042440, −8.359434629217760221147641005071, −7.55148289238900479761853146416, −6.79676077873873158056216667873, −6.17844835843997185499768170738, −5.34876883963515057545429861033, −4.81357870413969561667446293811, −3.03500125608773468115022531176, −2.59951624081907006934421405271, −1.41819956229099312237092660478, 0.32592372835047223712539166839, 1.38065508868933377644396312672, 3.17779129694635953876009540049, 3.97426791652236557253659632781, 4.70066714191072884606691469290, 5.23117870242481600587779957832, 6.42372197197166788844178362495, 6.96948567783300939658450681801, 7.920460628607853711662591199969, 8.839088466692589603269792597626

Graph of the $Z$-function along the critical line