| L(s) = 1 | − 2·3-s + 9-s − 2·13-s + 12·23-s + 8·25-s + 4·27-s − 4·37-s + 4·39-s − 24·47-s − 4·49-s − 16·61-s − 24·69-s − 24·71-s + 4·73-s − 16·75-s − 11·81-s + 24·83-s − 20·97-s − 24·107-s − 4·109-s + 8·111-s − 2·117-s − 22·121-s + 127-s + 131-s + 137-s + 139-s + ⋯ |
| L(s) = 1 | − 1.15·3-s + 1/3·9-s − 0.554·13-s + 2.50·23-s + 8/5·25-s + 0.769·27-s − 0.657·37-s + 0.640·39-s − 3.50·47-s − 4/7·49-s − 2.04·61-s − 2.88·69-s − 2.84·71-s + 0.468·73-s − 1.84·75-s − 1.22·81-s + 2.63·83-s − 2.03·97-s − 2.32·107-s − 0.383·109-s + 0.759·111-s − 0.184·117-s − 2·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 6230016 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6230016 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.7157410684\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.7157410684\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.115927017210107657419112042440, −8.839088466692589603269792597626, −8.359434629217760221147641005071, −7.920460628607853711662591199969, −7.55148289238900479761853146416, −6.96948567783300939658450681801, −6.79676077873873158056216667873, −6.42372197197166788844178362495, −6.17844835843997185499768170738, −5.34876883963515057545429861033, −5.23117870242481600587779957832, −4.81357870413969561667446293811, −4.70066714191072884606691469290, −3.97426791652236557253659632781, −3.17779129694635953876009540049, −3.03500125608773468115022531176, −2.59951624081907006934421405271, −1.41819956229099312237092660478, −1.38065508868933377644396312672, −0.32592372835047223712539166839,
0.32592372835047223712539166839, 1.38065508868933377644396312672, 1.41819956229099312237092660478, 2.59951624081907006934421405271, 3.03500125608773468115022531176, 3.17779129694635953876009540049, 3.97426791652236557253659632781, 4.70066714191072884606691469290, 4.81357870413969561667446293811, 5.23117870242481600587779957832, 5.34876883963515057545429861033, 6.17844835843997185499768170738, 6.42372197197166788844178362495, 6.79676077873873158056216667873, 6.96948567783300939658450681801, 7.55148289238900479761853146416, 7.920460628607853711662591199969, 8.359434629217760221147641005071, 8.839088466692589603269792597626, 9.115927017210107657419112042440