| L(s) = 1 | + 2·3-s + 3·9-s − 6·13-s − 4·17-s + 16·23-s + 6·25-s + 4·27-s − 4·29-s − 12·39-s − 16·43-s − 2·49-s − 8·51-s − 12·53-s − 4·61-s + 32·69-s + 12·75-s + 5·81-s − 8·87-s + 20·101-s + 8·103-s + 40·107-s − 20·113-s − 18·117-s − 14·121-s + 127-s − 32·129-s + 131-s + ⋯ |
| L(s) = 1 | + 1.15·3-s + 9-s − 1.66·13-s − 0.970·17-s + 3.33·23-s + 6/5·25-s + 0.769·27-s − 0.742·29-s − 1.92·39-s − 2.43·43-s − 2/7·49-s − 1.12·51-s − 1.64·53-s − 0.512·61-s + 3.85·69-s + 1.38·75-s + 5/9·81-s − 0.857·87-s + 1.99·101-s + 0.788·103-s + 3.86·107-s − 1.88·113-s − 1.66·117-s − 1.27·121-s + 0.0887·127-s − 2.81·129-s + 0.0873·131-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 6230016 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6230016 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(3.128982668\) |
| \(L(\frac12)\) |
\(\approx\) |
\(3.128982668\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.299704927663673901006833605468, −8.830371090362162636185338103030, −8.527808366431448342238415959786, −7.88748949357421697573605624506, −7.61380568927496493543039070107, −7.15594867082694675668167122316, −7.02738892350570075061713603367, −6.49733663385318923406310370023, −6.31412157146577481102677899576, −5.23127915070968894527634640303, −5.14937127613438349746101876579, −4.63330446319798422676151403566, −4.61978334940188289228449376933, −3.69799005394653875336342838669, −3.21814880665933099978407766982, −2.96811714008796927765976969340, −2.56602693206352553943795233325, −1.91493673869620852990302477157, −1.45013655444023649261043720712, −0.53958494106187398616266466713,
0.53958494106187398616266466713, 1.45013655444023649261043720712, 1.91493673869620852990302477157, 2.56602693206352553943795233325, 2.96811714008796927765976969340, 3.21814880665933099978407766982, 3.69799005394653875336342838669, 4.61978334940188289228449376933, 4.63330446319798422676151403566, 5.14937127613438349746101876579, 5.23127915070968894527634640303, 6.31412157146577481102677899576, 6.49733663385318923406310370023, 7.02738892350570075061713603367, 7.15594867082694675668167122316, 7.61380568927496493543039070107, 7.88748949357421697573605624506, 8.527808366431448342238415959786, 8.830371090362162636185338103030, 9.299704927663673901006833605468