Properties

Label 4-2496e2-1.1-c1e2-0-16
Degree $4$
Conductor $6230016$
Sign $1$
Analytic cond. $397.231$
Root an. cond. $4.46437$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s + 3·9-s + 6·13-s − 4·17-s + 8·23-s + 6·25-s − 4·27-s + 20·29-s − 12·39-s − 8·43-s + 10·49-s + 8·51-s + 12·53-s − 4·61-s − 16·69-s − 12·75-s + 5·81-s − 40·87-s − 4·101-s − 32·103-s − 16·107-s + 28·113-s + 18·117-s + 22·121-s + 127-s + 16·129-s + 131-s + ⋯
L(s)  = 1  − 1.15·3-s + 9-s + 1.66·13-s − 0.970·17-s + 1.66·23-s + 6/5·25-s − 0.769·27-s + 3.71·29-s − 1.92·39-s − 1.21·43-s + 10/7·49-s + 1.12·51-s + 1.64·53-s − 0.512·61-s − 1.92·69-s − 1.38·75-s + 5/9·81-s − 4.28·87-s − 0.398·101-s − 3.15·103-s − 1.54·107-s + 2.63·113-s + 1.66·117-s + 2·121-s + 0.0887·127-s + 1.40·129-s + 0.0873·131-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6230016 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6230016 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(6230016\)    =    \(2^{12} \cdot 3^{2} \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(397.231\)
Root analytic conductor: \(4.46437\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 6230016,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.405875264\)
\(L(\frac12)\) \(\approx\) \(2.405875264\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_1$ \( ( 1 + T )^{2} \)
13$C_2$ \( 1 - 6 T + p T^{2} \)
good5$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
7$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
11$C_2$ \( ( 1 - p T^{2} )^{2} \)
17$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
19$C_2^2$ \( 1 - 2 T^{2} + p^{2} T^{4} \)
23$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
29$C_2$ \( ( 1 - 10 T + p T^{2} )^{2} \)
31$C_2^2$ \( 1 + 38 T^{2} + p^{2} T^{4} \)
37$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
41$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
43$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
47$C_2^2$ \( 1 + 50 T^{2} + p^{2} T^{4} \)
53$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
59$C_2^2$ \( 1 - 102 T^{2} + p^{2} T^{4} \)
61$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
67$C_2^2$ \( 1 - 130 T^{2} + p^{2} T^{4} \)
71$C_2$ \( ( 1 - p T^{2} )^{2} \)
73$C_2^2$ \( 1 - 130 T^{2} + p^{2} T^{4} \)
79$C_2$ \( ( 1 + p T^{2} )^{2} \)
83$C_2^2$ \( 1 - 150 T^{2} + p^{2} T^{4} \)
89$C_2^2$ \( 1 - 142 T^{2} + p^{2} T^{4} \)
97$C_2^2$ \( 1 - 50 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.945788036158832306267704992298, −8.622705684907070998753851757528, −8.367517411383458877498500146946, −8.314867923470759919370174204799, −7.25906597754550183834240310899, −7.10921587357757010295235799710, −6.62293506178312334438084101834, −6.59696483526209601878506200631, −6.02439281888965314938366131321, −5.67672145735438302741027594839, −5.13575354460651775619037103489, −4.83787937079836053884547096337, −4.30043225343445173569649623752, −4.22500968495076618686509278589, −3.27904487397404063696102251563, −3.04904025041904822423244154549, −2.46411762025911602682651204632, −1.63894762662295027536884512983, −0.862667892041580733144885697872, −0.843748852506503738779317108194, 0.843748852506503738779317108194, 0.862667892041580733144885697872, 1.63894762662295027536884512983, 2.46411762025911602682651204632, 3.04904025041904822423244154549, 3.27904487397404063696102251563, 4.22500968495076618686509278589, 4.30043225343445173569649623752, 4.83787937079836053884547096337, 5.13575354460651775619037103489, 5.67672145735438302741027594839, 6.02439281888965314938366131321, 6.59696483526209601878506200631, 6.62293506178312334438084101834, 7.10921587357757010295235799710, 7.25906597754550183834240310899, 8.314867923470759919370174204799, 8.367517411383458877498500146946, 8.622705684907070998753851757528, 8.945788036158832306267704992298

Graph of the $Z$-function along the critical line