| L(s) = 1 | − 2·3-s + 3·9-s − 6·13-s − 4·17-s − 16·23-s + 6·25-s − 4·27-s − 4·29-s + 12·39-s + 16·43-s − 2·49-s + 8·51-s − 12·53-s − 4·61-s + 32·69-s − 12·75-s + 5·81-s + 8·87-s + 20·101-s − 8·103-s − 40·107-s − 20·113-s − 18·117-s − 14·121-s + 127-s − 32·129-s + 131-s + ⋯ |
| L(s) = 1 | − 1.15·3-s + 9-s − 1.66·13-s − 0.970·17-s − 3.33·23-s + 6/5·25-s − 0.769·27-s − 0.742·29-s + 1.92·39-s + 2.43·43-s − 2/7·49-s + 1.12·51-s − 1.64·53-s − 0.512·61-s + 3.85·69-s − 1.38·75-s + 5/9·81-s + 0.857·87-s + 1.99·101-s − 0.788·103-s − 3.86·107-s − 1.88·113-s − 1.66·117-s − 1.27·121-s + 0.0887·127-s − 2.81·129-s + 0.0873·131-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 6230016 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6230016 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(=\) |
\(0\) |
| \(L(\frac12)\) |
\(=\) |
\(0\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.774122938092192689635398306741, −8.198170640875879483694706895053, −7.80027620533378917643787793897, −7.68922444124778802244852055201, −7.11211347056595625423405606823, −6.78042750591045848011188619415, −6.32774576011944122046733324478, −6.08765278721864012664090033179, −5.47370695613666198886768978156, −5.41303236614920804770108968450, −4.66241738282695601451822942507, −4.40169823233251598748663983333, −4.15325793583821803609865162559, −3.55168880619980416170380306026, −2.78600508295564923287730164033, −2.28055563812124620616158401142, −1.94421490093683546786349999249, −1.15430446050298684736808559259, 0, 0,
1.15430446050298684736808559259, 1.94421490093683546786349999249, 2.28055563812124620616158401142, 2.78600508295564923287730164033, 3.55168880619980416170380306026, 4.15325793583821803609865162559, 4.40169823233251598748663983333, 4.66241738282695601451822942507, 5.41303236614920804770108968450, 5.47370695613666198886768978156, 6.08765278721864012664090033179, 6.32774576011944122046733324478, 6.78042750591045848011188619415, 7.11211347056595625423405606823, 7.68922444124778802244852055201, 7.80027620533378917643787793897, 8.198170640875879483694706895053, 8.774122938092192689635398306741