Properties

Label 2-245-1.1-c5-0-18
Degree $2$
Conductor $245$
Sign $1$
Analytic cond. $39.2940$
Root an. cond. $6.26849$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 9.26·2-s + 1.27·3-s + 53.9·4-s + 25·5-s − 11.8·6-s − 203.·8-s − 241.·9-s − 231.·10-s + 478.·11-s + 68.7·12-s − 203.·13-s + 31.8·15-s + 157.·16-s + 854.·17-s + 2.23e3·18-s + 1.38e3·19-s + 1.34e3·20-s − 4.43e3·22-s + 2.41e3·23-s − 258.·24-s + 625·25-s + 1.88e3·26-s − 617.·27-s − 4.20e3·29-s − 295.·30-s − 7.47e3·31-s + 5.03e3·32-s + ⋯
L(s)  = 1  − 1.63·2-s + 0.0817·3-s + 1.68·4-s + 0.447·5-s − 0.133·6-s − 1.12·8-s − 0.993·9-s − 0.732·10-s + 1.19·11-s + 0.137·12-s − 0.333·13-s + 0.0365·15-s + 0.154·16-s + 0.716·17-s + 1.62·18-s + 0.880·19-s + 0.753·20-s − 1.95·22-s + 0.951·23-s − 0.0917·24-s + 0.200·25-s + 0.546·26-s − 0.162·27-s − 0.929·29-s − 0.0599·30-s − 1.39·31-s + 0.869·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 245 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 245 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(245\)    =    \(5 \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(39.2940\)
Root analytic conductor: \(6.26849\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 245,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(0.9446242929\)
\(L(\frac12)\) \(\approx\) \(0.9446242929\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 - 25T \)
7 \( 1 \)
good2 \( 1 + 9.26T + 32T^{2} \)
3 \( 1 - 1.27T + 243T^{2} \)
11 \( 1 - 478.T + 1.61e5T^{2} \)
13 \( 1 + 203.T + 3.71e5T^{2} \)
17 \( 1 - 854.T + 1.41e6T^{2} \)
19 \( 1 - 1.38e3T + 2.47e6T^{2} \)
23 \( 1 - 2.41e3T + 6.43e6T^{2} \)
29 \( 1 + 4.20e3T + 2.05e7T^{2} \)
31 \( 1 + 7.47e3T + 2.86e7T^{2} \)
37 \( 1 - 9.59e3T + 6.93e7T^{2} \)
41 \( 1 + 5.50e3T + 1.15e8T^{2} \)
43 \( 1 + 5.02e3T + 1.47e8T^{2} \)
47 \( 1 + 2.37e4T + 2.29e8T^{2} \)
53 \( 1 + 1.08e4T + 4.18e8T^{2} \)
59 \( 1 - 1.04e4T + 7.14e8T^{2} \)
61 \( 1 - 4.41e4T + 8.44e8T^{2} \)
67 \( 1 - 5.31e4T + 1.35e9T^{2} \)
71 \( 1 - 1.58e4T + 1.80e9T^{2} \)
73 \( 1 - 7.76e4T + 2.07e9T^{2} \)
79 \( 1 + 8.61e4T + 3.07e9T^{2} \)
83 \( 1 + 5.21e4T + 3.93e9T^{2} \)
89 \( 1 - 2.32e4T + 5.58e9T^{2} \)
97 \( 1 - 1.80e5T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.19797546322794905858997540895, −9.851109191704134111139141546799, −9.356618744975169476423419585446, −8.531194748543643963601374693242, −7.50872789130056273761278198180, −6.54861384116300954226471973198, −5.33705996232760535499303456249, −3.32097881866655348191528042010, −1.90443712595586434007571851851, −0.74120014221183607482903455362, 0.74120014221183607482903455362, 1.90443712595586434007571851851, 3.32097881866655348191528042010, 5.33705996232760535499303456249, 6.54861384116300954226471973198, 7.50872789130056273761278198180, 8.531194748543643963601374693242, 9.356618744975169476423419585446, 9.851109191704134111139141546799, 11.19797546322794905858997540895

Graph of the $Z$-function along the critical line