Properties

Label 4-245e2-1.1-c3e2-0-2
Degree $4$
Conductor $60025$
Sign $1$
Analytic cond. $208.960$
Root an. cond. $3.80203$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·2-s − 2·3-s + 8·4-s + 5·5-s − 8·6-s + 32·8-s + 27·9-s + 20·10-s − 32·11-s − 16·12-s − 76·13-s − 10·15-s + 128·16-s − 26·17-s + 108·18-s − 100·19-s + 40·20-s − 128·22-s + 78·23-s − 64·24-s − 304·26-s − 154·27-s − 100·29-s − 40·30-s + 108·31-s + 256·32-s + 64·33-s + ⋯
L(s)  = 1  + 1.41·2-s − 0.384·3-s + 4-s + 0.447·5-s − 0.544·6-s + 1.41·8-s + 9-s + 0.632·10-s − 0.877·11-s − 0.384·12-s − 1.62·13-s − 0.172·15-s + 2·16-s − 0.370·17-s + 1.41·18-s − 1.20·19-s + 0.447·20-s − 1.24·22-s + 0.707·23-s − 0.544·24-s − 2.29·26-s − 1.09·27-s − 0.640·29-s − 0.243·30-s + 0.625·31-s + 1.41·32-s + 0.337·33-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 60025 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 60025 ^{s/2} \, \Gamma_{\C}(s+3/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(60025\)    =    \(5^{2} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(208.960\)
Root analytic conductor: \(3.80203\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 60025,\ (\ :3/2, 3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(4.945473872\)
\(L(\frac12)\) \(\approx\) \(4.945473872\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad5$C_2$ \( 1 - p T + p^{2} T^{2} \)
7 \( 1 \)
good2$C_2^2$ \( 1 - p^{2} T + p^{3} T^{2} - p^{5} T^{3} + p^{6} T^{4} \)
3$C_2^2$ \( 1 + 2 T - 23 T^{2} + 2 p^{3} T^{3} + p^{6} T^{4} \)
11$C_2^2$ \( 1 + 32 T - 307 T^{2} + 32 p^{3} T^{3} + p^{6} T^{4} \)
13$C_2$ \( ( 1 + 38 T + p^{3} T^{2} )^{2} \)
17$C_2^2$ \( 1 + 26 T - 4237 T^{2} + 26 p^{3} T^{3} + p^{6} T^{4} \)
19$C_2^2$ \( 1 + 100 T + 3141 T^{2} + 100 p^{3} T^{3} + p^{6} T^{4} \)
23$C_2^2$ \( 1 - 78 T - 6083 T^{2} - 78 p^{3} T^{3} + p^{6} T^{4} \)
29$C_2$ \( ( 1 + 50 T + p^{3} T^{2} )^{2} \)
31$C_2^2$ \( 1 - 108 T - 18127 T^{2} - 108 p^{3} T^{3} + p^{6} T^{4} \)
37$C_2^2$ \( 1 + 266 T + 20103 T^{2} + 266 p^{3} T^{3} + p^{6} T^{4} \)
41$C_2$ \( ( 1 - 22 T + p^{3} T^{2} )^{2} \)
43$C_2$ \( ( 1 - 442 T + p^{3} T^{2} )^{2} \)
47$C_2^2$ \( 1 - 514 T + 160373 T^{2} - 514 p^{3} T^{3} + p^{6} T^{4} \)
53$C_2^2$ \( 1 + 2 T - 148873 T^{2} + 2 p^{3} T^{3} + p^{6} T^{4} \)
59$C_2^2$ \( 1 + 500 T + 44621 T^{2} + 500 p^{3} T^{3} + p^{6} T^{4} \)
61$C_2^2$ \( 1 - 518 T + 41343 T^{2} - 518 p^{3} T^{3} + p^{6} T^{4} \)
67$C_2^2$ \( 1 + 126 T - 284887 T^{2} + 126 p^{3} T^{3} + p^{6} T^{4} \)
71$C_2$ \( ( 1 - 412 T + p^{3} T^{2} )^{2} \)
73$C_2^2$ \( 1 - 878 T + 381867 T^{2} - 878 p^{3} T^{3} + p^{6} T^{4} \)
79$C_2^2$ \( 1 + 600 T - 133039 T^{2} + 600 p^{3} T^{3} + p^{6} T^{4} \)
83$C_2$ \( ( 1 - 282 T + p^{3} T^{2} )^{2} \)
89$C_2^2$ \( 1 - 150 T - 682469 T^{2} - 150 p^{3} T^{3} + p^{6} T^{4} \)
97$C_2$ \( ( 1 - 386 T + p^{3} T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.54712674832775462319107104116, −11.35096487950710421144254125816, −11.01473925262722107671989393189, −10.41520018845263075016361902192, −10.32822786445233429690194285638, −9.591548520721898857592312247374, −9.176229285482768075285099120569, −8.311955385578660239386125764245, −7.61834804201574970677668595993, −7.22348633186634121494028982610, −7.00126761520659649683611023234, −5.97991983867936418588493977696, −5.70143505802079760650968466587, −4.99240672876561247558568466609, −4.59483832212198430216952810042, −4.23264448417546051908294080439, −3.42927418173034436819367936490, −2.27394626245577469507897501515, −2.11216126027956201076185150783, −0.71771042518030613319007820161, 0.71771042518030613319007820161, 2.11216126027956201076185150783, 2.27394626245577469507897501515, 3.42927418173034436819367936490, 4.23264448417546051908294080439, 4.59483832212198430216952810042, 4.99240672876561247558568466609, 5.70143505802079760650968466587, 5.97991983867936418588493977696, 7.00126761520659649683611023234, 7.22348633186634121494028982610, 7.61834804201574970677668595993, 8.311955385578660239386125764245, 9.176229285482768075285099120569, 9.591548520721898857592312247374, 10.32822786445233429690194285638, 10.41520018845263075016361902192, 11.01473925262722107671989393189, 11.35096487950710421144254125816, 12.54712674832775462319107104116

Graph of the $Z$-function along the critical line