| L(s) = 1 | + (−0.866 + 0.5i)2-s + (−0.866 − 0.5i)3-s + (−0.500 + 0.866i)4-s + (−1.23 + 1.86i)5-s + 0.999·6-s − 3i·8-s + (−1 − 1.73i)9-s + (0.133 − 2.23i)10-s + (0.866 − 0.499i)12-s − 2i·13-s + (2 − i)15-s + (0.500 + 0.866i)16-s + (−1.73 − i)17-s + (1.73 + i)18-s + (−3 − 5.19i)19-s + (−0.999 − 2i)20-s + ⋯ |
| L(s) = 1 | + (−0.612 + 0.353i)2-s + (−0.499 − 0.288i)3-s + (−0.250 + 0.433i)4-s + (−0.550 + 0.834i)5-s + 0.408·6-s − 1.06i·8-s + (−0.333 − 0.577i)9-s + (0.0423 − 0.705i)10-s + (0.249 − 0.144i)12-s − 0.554i·13-s + (0.516 − 0.258i)15-s + (0.125 + 0.216i)16-s + (−0.420 − 0.242i)17-s + (0.408 + 0.235i)18-s + (−0.688 − 1.19i)19-s + (−0.223 − 0.447i)20-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 245 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.441 + 0.897i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 245 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.441 + 0.897i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.0754839 - 0.121205i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.0754839 - 0.121205i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 5 | \( 1 + (1.23 - 1.86i)T \) |
| 7 | \( 1 \) |
| good | 2 | \( 1 + (0.866 - 0.5i)T + (1 - 1.73i)T^{2} \) |
| 3 | \( 1 + (0.866 + 0.5i)T + (1.5 + 2.59i)T^{2} \) |
| 11 | \( 1 + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + 2iT - 13T^{2} \) |
| 17 | \( 1 + (1.73 + i)T + (8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (3 + 5.19i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (2.59 - 1.5i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + 7T + 29T^{2} \) |
| 31 | \( 1 + (-1 + 1.73i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (-6.92 + 4i)T + (18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + 5T + 41T^{2} \) |
| 43 | \( 1 - 7iT - 43T^{2} \) |
| 47 | \( 1 + (23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (5.19 + 3i)T + (26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (5 - 8.66i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-3.5 - 6.06i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (4.33 + 2.5i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 2T + 71T^{2} \) |
| 73 | \( 1 + (5.19 + 3i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (1 + 1.73i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 - 11iT - 83T^{2} \) |
| 89 | \( 1 + (4.5 + 7.79i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + 16iT - 97T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.64231950683857230360666832978, −10.96929848247806857700948469271, −9.726863145790024520807496131507, −8.771930599743764200590183228898, −7.71344682988807323143604297603, −6.94839155431265055827884772331, −6.01838284493234335911771964454, −4.25236468525694142881114824478, −3.00963034428943585660612534693, −0.14531022732824240318686317720,
1.83895907454852448713953458186, 4.15103403855096929517846152514, 5.11288436494430705583372029567, 6.11845769572268643268179993261, 7.906753655950529321518260937554, 8.592241243058548382250794644736, 9.577849733230407296176285489547, 10.52522760788560324126306156583, 11.30104632370477761847189495058, 12.08286456654639250960919158980