| L(s) = 1 | + (−0.104 − 0.994i)2-s + (−0.978 + 0.207i)4-s + (−1.30 − 1.45i)5-s + (0.309 + 0.951i)8-s + (0.309 − 0.951i)9-s + (−1.30 + 1.45i)10-s + (−0.309 + 0.535i)13-s + (0.913 − 0.406i)16-s + (1.58 − 0.336i)17-s + (−0.978 − 0.207i)18-s + (1.58 + 1.14i)20-s + (−0.295 + 2.81i)25-s + (0.564 + 0.251i)26-s + (0.104 + 0.181i)29-s + (−0.499 − 0.866i)32-s + ⋯ |
| L(s) = 1 | + (−0.104 − 0.994i)2-s + (−0.978 + 0.207i)4-s + (−1.30 − 1.45i)5-s + (0.309 + 0.951i)8-s + (0.309 − 0.951i)9-s + (−1.30 + 1.45i)10-s + (−0.309 + 0.535i)13-s + (0.913 − 0.406i)16-s + (1.58 − 0.336i)17-s + (−0.978 − 0.207i)18-s + (1.58 + 1.14i)20-s + (−0.295 + 2.81i)25-s + (0.564 + 0.251i)26-s + (0.104 + 0.181i)29-s + (−0.499 − 0.866i)32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 244 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.665 + 0.746i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 244 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.665 + 0.746i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.5348338779\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.5348338779\) |
| \(L(1)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (0.104 + 0.994i)T \) |
| 61 | \( 1 + (0.104 + 0.994i)T \) |
| good | 3 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 5 | \( 1 + (1.30 + 1.45i)T + (-0.104 + 0.994i)T^{2} \) |
| 7 | \( 1 + (-0.669 + 0.743i)T^{2} \) |
| 11 | \( 1 - T^{2} \) |
| 13 | \( 1 + (0.309 - 0.535i)T + (-0.5 - 0.866i)T^{2} \) |
| 17 | \( 1 + (-1.58 + 0.336i)T + (0.913 - 0.406i)T^{2} \) |
| 19 | \( 1 + (-0.669 - 0.743i)T^{2} \) |
| 23 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 29 | \( 1 + (-0.104 - 0.181i)T + (-0.5 + 0.866i)T^{2} \) |
| 31 | \( 1 + (0.978 + 0.207i)T^{2} \) |
| 37 | \( 1 + (-0.809 - 0.587i)T + (0.309 + 0.951i)T^{2} \) |
| 41 | \( 1 + (1.08 + 0.786i)T + (0.309 + 0.951i)T^{2} \) |
| 43 | \( 1 + (-0.913 - 0.406i)T^{2} \) |
| 47 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 53 | \( 1 + (-0.413 - 1.27i)T + (-0.809 + 0.587i)T^{2} \) |
| 59 | \( 1 + (0.978 - 0.207i)T^{2} \) |
| 67 | \( 1 + (0.104 - 0.994i)T^{2} \) |
| 71 | \( 1 + (0.104 + 0.994i)T^{2} \) |
| 73 | \( 1 + (0.669 - 0.743i)T + (-0.104 - 0.994i)T^{2} \) |
| 79 | \( 1 + (-0.913 - 0.406i)T^{2} \) |
| 83 | \( 1 + (0.978 - 0.207i)T^{2} \) |
| 89 | \( 1 + (1.47 - 1.07i)T + (0.309 - 0.951i)T^{2} \) |
| 97 | \( 1 + (0.139 - 1.33i)T + (-0.978 - 0.207i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.18696426965100906450900106762, −11.39622233955667330091272054431, −9.954427843220052653034432955458, −9.154995861072454981191777835862, −8.338460228331970158873056958338, −7.37528020879585619313820226129, −5.34433396477285235563137918429, −4.31864238235140234403421413064, −3.44745603713105130267173731296, −1.09615697622952617608287688637,
3.16448234345657177375944974834, 4.34633134076900484221985196370, 5.72764974804262116656979440036, 6.99451955132756718610305685925, 7.68648417606078946317086554133, 8.229949248644840179403496550608, 9.995408607621350072971980485404, 10.54823548592659958113423607108, 11.68391067632260238021777607003, 12.75791906011726759288124941871