Properties

Label 2-3e5-81.25-c1-0-2
Degree $2$
Conductor $243$
Sign $0.479 - 0.877i$
Analytic cond. $1.94036$
Root an. cond. $1.39296$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.94 + 0.976i)2-s + (1.63 − 2.19i)4-s + (0.185 − 0.619i)5-s + (−0.724 + 1.67i)7-s + (−0.277 + 1.57i)8-s + (0.244 + 1.38i)10-s + (1.17 + 0.279i)11-s + (4.45 − 2.93i)13-s + (−0.231 − 3.97i)14-s + (0.571 + 1.90i)16-s + (6.43 + 2.34i)17-s + (−5.97 + 2.17i)19-s + (−1.05 − 1.41i)20-s + (−2.56 + 0.607i)22-s + (1.23 + 2.86i)23-s + ⋯
L(s)  = 1  + (−1.37 + 0.690i)2-s + (0.816 − 1.09i)4-s + (0.0829 − 0.276i)5-s + (−0.273 + 0.634i)7-s + (−0.0980 + 0.556i)8-s + (0.0772 + 0.438i)10-s + (0.354 + 0.0841i)11-s + (1.23 − 0.812i)13-s + (−0.0618 − 1.06i)14-s + (0.142 + 0.477i)16-s + (1.56 + 0.567i)17-s + (−1.37 + 0.499i)19-s + (−0.236 − 0.317i)20-s + (−0.546 + 0.129i)22-s + (0.257 + 0.596i)23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 243 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.479 - 0.877i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 243 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.479 - 0.877i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(243\)    =    \(3^{5}\)
Sign: $0.479 - 0.877i$
Analytic conductor: \(1.94036\)
Root analytic conductor: \(1.39296\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{243} (73, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 243,\ (\ :1/2),\ 0.479 - 0.877i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.569726 + 0.337767i\)
\(L(\frac12)\) \(\approx\) \(0.569726 + 0.337767i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
good2 \( 1 + (1.94 - 0.976i)T + (1.19 - 1.60i)T^{2} \)
5 \( 1 + (-0.185 + 0.619i)T + (-4.17 - 2.74i)T^{2} \)
7 \( 1 + (0.724 - 1.67i)T + (-4.80 - 5.09i)T^{2} \)
11 \( 1 + (-1.17 - 0.279i)T + (9.82 + 4.93i)T^{2} \)
13 \( 1 + (-4.45 + 2.93i)T + (5.14 - 11.9i)T^{2} \)
17 \( 1 + (-6.43 - 2.34i)T + (13.0 + 10.9i)T^{2} \)
19 \( 1 + (5.97 - 2.17i)T + (14.5 - 12.2i)T^{2} \)
23 \( 1 + (-1.23 - 2.86i)T + (-15.7 + 16.7i)T^{2} \)
29 \( 1 + (0.342 - 5.87i)T + (-28.8 - 3.36i)T^{2} \)
31 \( 1 + (-2.75 - 0.321i)T + (30.1 + 7.14i)T^{2} \)
37 \( 1 + (1.09 - 0.918i)T + (6.42 - 36.4i)T^{2} \)
41 \( 1 + (0.996 + 0.500i)T + (24.4 + 32.8i)T^{2} \)
43 \( 1 + (-6.61 + 7.00i)T + (-2.50 - 42.9i)T^{2} \)
47 \( 1 + (-6.06 + 0.708i)T + (45.7 - 10.8i)T^{2} \)
53 \( 1 + (4.26 + 7.38i)T + (-26.5 + 45.8i)T^{2} \)
59 \( 1 + (2.03 - 0.481i)T + (52.7 - 26.4i)T^{2} \)
61 \( 1 + (2.14 + 2.87i)T + (-17.4 + 58.4i)T^{2} \)
67 \( 1 + (0.0709 + 1.21i)T + (-66.5 + 7.77i)T^{2} \)
71 \( 1 + (1.41 + 8.02i)T + (-66.7 + 24.2i)T^{2} \)
73 \( 1 + (-1.11 + 6.32i)T + (-68.5 - 24.9i)T^{2} \)
79 \( 1 + (12.7 - 6.39i)T + (47.1 - 63.3i)T^{2} \)
83 \( 1 + (6.00 - 3.01i)T + (49.5 - 66.5i)T^{2} \)
89 \( 1 + (-2.70 + 15.3i)T + (-83.6 - 30.4i)T^{2} \)
97 \( 1 + (-1.06 - 3.57i)T + (-81.0 + 53.3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.32528009858708589035360107693, −10.83847689216885574381423260030, −10.20014819449548280480132214053, −9.032173397922233691999989493322, −8.541057637341009308829424566085, −7.58119419039053379038968197233, −6.33990559193138981926143480325, −5.57748862132412013281361490154, −3.54944812791804241559511587311, −1.33851800678293230141729355966, 1.04701247386371398371008912518, 2.73891270536811640288532767493, 4.20322948078900561455644565115, 6.17437675320186649912814569724, 7.21868149804442934739495425568, 8.335876651319408789822140560305, 9.127179725941233070829436728975, 10.09206150327335728171759583802, 10.78952563609008950163507203708, 11.54878983044249886745649534702

Graph of the $Z$-function along the critical line