Properties

Label 2-3e5-81.76-c1-0-1
Degree $2$
Conductor $243$
Sign $0.135 - 0.990i$
Analytic cond. $1.94036$
Root an. cond. $1.39296$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.643 − 0.152i)2-s + (−1.39 + 0.701i)4-s + (1.50 + 2.01i)5-s + (−3.43 + 2.25i)7-s + (−1.80 + 1.51i)8-s + (1.27 + 1.06i)10-s + (2.94 + 0.343i)11-s + (0.930 + 3.10i)13-s + (−1.86 + 1.97i)14-s + (0.935 − 1.25i)16-s + (0.572 − 3.24i)17-s + (−0.571 − 3.23i)19-s + (−3.50 − 1.76i)20-s + (1.94 − 0.227i)22-s + (2.08 + 1.37i)23-s + ⋯
L(s)  = 1  + (0.455 − 0.107i)2-s + (−0.698 + 0.350i)4-s + (0.671 + 0.901i)5-s + (−1.29 + 0.854i)7-s + (−0.638 + 0.535i)8-s + (0.402 + 0.337i)10-s + (0.886 + 0.103i)11-s + (0.257 + 0.861i)13-s + (−0.498 + 0.528i)14-s + (0.233 − 0.314i)16-s + (0.138 − 0.787i)17-s + (−0.131 − 0.743i)19-s + (−0.784 − 0.394i)20-s + (0.414 − 0.0484i)22-s + (0.434 + 0.286i)23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 243 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.135 - 0.990i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 243 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.135 - 0.990i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(243\)    =    \(3^{5}\)
Sign: $0.135 - 0.990i$
Analytic conductor: \(1.94036\)
Root analytic conductor: \(1.39296\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{243} (118, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 243,\ (\ :1/2),\ 0.135 - 0.990i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.935127 + 0.816224i\)
\(L(\frac12)\) \(\approx\) \(0.935127 + 0.816224i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
good2 \( 1 + (-0.643 + 0.152i)T + (1.78 - 0.897i)T^{2} \)
5 \( 1 + (-1.50 - 2.01i)T + (-1.43 + 4.78i)T^{2} \)
7 \( 1 + (3.43 - 2.25i)T + (2.77 - 6.42i)T^{2} \)
11 \( 1 + (-2.94 - 0.343i)T + (10.7 + 2.53i)T^{2} \)
13 \( 1 + (-0.930 - 3.10i)T + (-10.8 + 7.14i)T^{2} \)
17 \( 1 + (-0.572 + 3.24i)T + (-15.9 - 5.81i)T^{2} \)
19 \( 1 + (0.571 + 3.23i)T + (-17.8 + 6.49i)T^{2} \)
23 \( 1 + (-2.08 - 1.37i)T + (9.10 + 21.1i)T^{2} \)
29 \( 1 + (-3.82 - 4.04i)T + (-1.68 + 28.9i)T^{2} \)
31 \( 1 + (0.373 - 6.41i)T + (-30.7 - 3.59i)T^{2} \)
37 \( 1 + (2.56 - 0.935i)T + (28.3 - 23.7i)T^{2} \)
41 \( 1 + (-8.80 - 2.08i)T + (36.6 + 18.4i)T^{2} \)
43 \( 1 + (3.09 + 7.17i)T + (-29.5 + 31.2i)T^{2} \)
47 \( 1 + (0.588 + 10.1i)T + (-46.6 + 5.45i)T^{2} \)
53 \( 1 + (0.00494 - 0.00856i)T + (-26.5 - 45.8i)T^{2} \)
59 \( 1 + (11.2 - 1.32i)T + (57.4 - 13.6i)T^{2} \)
61 \( 1 + (-8.05 - 4.04i)T + (36.4 + 48.9i)T^{2} \)
67 \( 1 + (4.01 - 4.25i)T + (-3.89 - 66.8i)T^{2} \)
71 \( 1 + (-1.81 - 1.52i)T + (12.3 + 69.9i)T^{2} \)
73 \( 1 + (-3.61 + 3.03i)T + (12.6 - 71.8i)T^{2} \)
79 \( 1 + (-8.75 + 2.07i)T + (70.5 - 35.4i)T^{2} \)
83 \( 1 + (-3.60 + 0.853i)T + (74.1 - 37.2i)T^{2} \)
89 \( 1 + (-9.57 + 8.03i)T + (15.4 - 87.6i)T^{2} \)
97 \( 1 + (4.27 - 5.73i)T + (-27.8 - 92.9i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.34444539648550087218032373911, −11.67054070521229825830500379481, −10.30615502239917924573674377216, −9.206925521275240846045725949665, −8.942831436052927238282455735591, −6.95357460053370953904502238019, −6.31540206830807499640207355119, −5.08153649634329676970098023394, −3.56308876114829317515419742956, −2.63368414103916982819385174730, 0.947549244488307460894798128456, 3.49593224645809101905197570254, 4.45438463880115663595417433750, 5.84759598099634557749329929539, 6.37507696205456423605731011195, 8.069364561158330204046179298694, 9.288534955063164032051387772797, 9.738403254722913591933813656699, 10.71201334143429227510406907317, 12.47433274062066984736302898620

Graph of the $Z$-function along the critical line