Properties

Label 2-3e5-27.25-c1-0-1
Degree $2$
Conductor $243$
Sign $-0.636 - 0.771i$
Analytic cond. $1.94036$
Root an. cond. $1.39296$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.139 + 0.789i)2-s + (1.27 + 0.464i)4-s + (−2.10 + 1.76i)5-s + (−2.23 + 0.812i)7-s + (−1.34 + 2.33i)8-s + (−1.10 − 1.90i)10-s + (−0.191 − 0.160i)11-s + (0.453 + 2.57i)13-s + (−0.330 − 1.87i)14-s + (0.427 + 0.358i)16-s + (0.146 + 0.254i)17-s + (1.39 − 2.41i)19-s + (−3.50 + 1.27i)20-s + (0.153 − 0.128i)22-s + (6.28 + 2.28i)23-s + ⋯
L(s)  = 1  + (−0.0984 + 0.558i)2-s + (0.637 + 0.232i)4-s + (−0.942 + 0.790i)5-s + (−0.844 + 0.307i)7-s + (−0.475 + 0.823i)8-s + (−0.348 − 0.603i)10-s + (−0.0577 − 0.0484i)11-s + (0.125 + 0.713i)13-s + (−0.0884 − 0.501i)14-s + (0.106 + 0.0896i)16-s + (0.0355 + 0.0616i)17-s + (0.319 − 0.553i)19-s + (−0.784 + 0.285i)20-s + (0.0327 − 0.0274i)22-s + (1.31 + 0.477i)23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 243 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.636 - 0.771i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 243 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.636 - 0.771i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(243\)    =    \(3^{5}\)
Sign: $-0.636 - 0.771i$
Analytic conductor: \(1.94036\)
Root analytic conductor: \(1.39296\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{243} (217, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 243,\ (\ :1/2),\ -0.636 - 0.771i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.426110 + 0.904601i\)
\(L(\frac12)\) \(\approx\) \(0.426110 + 0.904601i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
good2 \( 1 + (0.139 - 0.789i)T + (-1.87 - 0.684i)T^{2} \)
5 \( 1 + (2.10 - 1.76i)T + (0.868 - 4.92i)T^{2} \)
7 \( 1 + (2.23 - 0.812i)T + (5.36 - 4.49i)T^{2} \)
11 \( 1 + (0.191 + 0.160i)T + (1.91 + 10.8i)T^{2} \)
13 \( 1 + (-0.453 - 2.57i)T + (-12.2 + 4.44i)T^{2} \)
17 \( 1 + (-0.146 - 0.254i)T + (-8.5 + 14.7i)T^{2} \)
19 \( 1 + (-1.39 + 2.41i)T + (-9.5 - 16.4i)T^{2} \)
23 \( 1 + (-6.28 - 2.28i)T + (17.6 + 14.7i)T^{2} \)
29 \( 1 + (0.0616 - 0.349i)T + (-27.2 - 9.91i)T^{2} \)
31 \( 1 + (2.59 + 0.945i)T + (23.7 + 19.9i)T^{2} \)
37 \( 1 + (-3.49 - 6.05i)T + (-18.5 + 32.0i)T^{2} \)
41 \( 1 + (1.68 + 9.56i)T + (-38.5 + 14.0i)T^{2} \)
43 \( 1 + (-0.199 - 0.167i)T + (7.46 + 42.3i)T^{2} \)
47 \( 1 + (-10.7 + 3.90i)T + (36.0 - 30.2i)T^{2} \)
53 \( 1 - 5.43T + 53T^{2} \)
59 \( 1 + (-4.57 + 3.84i)T + (10.2 - 58.1i)T^{2} \)
61 \( 1 + (-11.1 + 4.05i)T + (46.7 - 39.2i)T^{2} \)
67 \( 1 + (-0.314 - 1.78i)T + (-62.9 + 22.9i)T^{2} \)
71 \( 1 + (-0.185 - 0.320i)T + (-35.5 + 61.4i)T^{2} \)
73 \( 1 + (2.51 - 4.35i)T + (-36.5 - 63.2i)T^{2} \)
79 \( 1 + (-0.139 + 0.790i)T + (-74.2 - 27.0i)T^{2} \)
83 \( 1 + (0.478 - 2.71i)T + (-77.9 - 28.3i)T^{2} \)
89 \( 1 + (5.22 - 9.05i)T + (-44.5 - 77.0i)T^{2} \)
97 \( 1 + (11.3 + 9.53i)T + (16.8 + 95.5i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.24009491315434384155142086495, −11.46257527496459295161780032053, −10.80611977929530194499859073392, −9.406201040086365852712032560298, −8.374850491669442153028858447671, −7.12485153169730361525792653042, −6.86285448662050342430173717071, −5.53875108298564660156980379791, −3.71151217403148752255887640153, −2.68574515240628302967933472131, 0.837031408139444010986086460616, 2.92083756810278092988801130617, 4.03081770294757179022462841406, 5.56207529806685678764417936565, 6.83038048190519358943758433704, 7.79020463381965129384448471700, 8.985050044381369599549305985003, 10.00439087756018477088745369037, 10.86912588997809435383304291307, 11.77860362052019371687362093073

Graph of the $Z$-function along the critical line