Properties

Label 2-7e4-1.1-c3-0-43
Degree $2$
Conductor $2401$
Sign $1$
Analytic cond. $141.663$
Root an. cond. $11.9022$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4.16·2-s − 3.29·3-s + 9.34·4-s − 10.5·5-s − 13.7·6-s + 5.61·8-s − 16.1·9-s − 44.0·10-s − 54.8·11-s − 30.7·12-s − 30.0·13-s + 34.8·15-s − 51.3·16-s − 44.7·17-s − 67.2·18-s + 71.5·19-s − 98.8·20-s − 228.·22-s − 167.·23-s − 18.5·24-s − 13.2·25-s − 125.·26-s + 142.·27-s + 18.8·29-s + 145.·30-s − 114.·31-s − 258.·32-s + ⋯
L(s)  = 1  + 1.47·2-s − 0.633·3-s + 1.16·4-s − 0.945·5-s − 0.933·6-s + 0.248·8-s − 0.598·9-s − 1.39·10-s − 1.50·11-s − 0.740·12-s − 0.640·13-s + 0.599·15-s − 0.802·16-s − 0.638·17-s − 0.880·18-s + 0.864·19-s − 1.10·20-s − 2.21·22-s − 1.51·23-s − 0.157·24-s − 0.106·25-s − 0.943·26-s + 1.01·27-s + 0.120·29-s + 0.882·30-s − 0.662·31-s − 1.43·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2401 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2401 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2401\)    =    \(7^{4}\)
Sign: $1$
Analytic conductor: \(141.663\)
Root analytic conductor: \(11.9022\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2401,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.7004590344\)
\(L(\frac12)\) \(\approx\) \(0.7004590344\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 \)
good2 \( 1 - 4.16T + 8T^{2} \)
3 \( 1 + 3.29T + 27T^{2} \)
5 \( 1 + 10.5T + 125T^{2} \)
11 \( 1 + 54.8T + 1.33e3T^{2} \)
13 \( 1 + 30.0T + 2.19e3T^{2} \)
17 \( 1 + 44.7T + 4.91e3T^{2} \)
19 \( 1 - 71.5T + 6.85e3T^{2} \)
23 \( 1 + 167.T + 1.21e4T^{2} \)
29 \( 1 - 18.8T + 2.43e4T^{2} \)
31 \( 1 + 114.T + 2.97e4T^{2} \)
37 \( 1 + 84.5T + 5.06e4T^{2} \)
41 \( 1 - 61.8T + 6.89e4T^{2} \)
43 \( 1 - 164.T + 7.95e4T^{2} \)
47 \( 1 - 541.T + 1.03e5T^{2} \)
53 \( 1 - 486.T + 1.48e5T^{2} \)
59 \( 1 + 225.T + 2.05e5T^{2} \)
61 \( 1 + 464.T + 2.26e5T^{2} \)
67 \( 1 + 133.T + 3.00e5T^{2} \)
71 \( 1 + 703.T + 3.57e5T^{2} \)
73 \( 1 - 1.13e3T + 3.89e5T^{2} \)
79 \( 1 + 1.18e3T + 4.93e5T^{2} \)
83 \( 1 - 1.08e3T + 5.71e5T^{2} \)
89 \( 1 + 1.41e3T + 7.04e5T^{2} \)
97 \( 1 + 352.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.361159967089034875319021366331, −7.61895749900089309366976577148, −6.94905873517783356369305612275, −5.74445460974792807070162263620, −5.56565983889943575546678946222, −4.63196738835816796865425902387, −3.98943028408801681490059043272, −2.99174467875930142095093660047, −2.29945455283182407740978186299, −0.28023187976460659307436911197, 0.28023187976460659307436911197, 2.29945455283182407740978186299, 2.99174467875930142095093660047, 3.98943028408801681490059043272, 4.63196738835816796865425902387, 5.56565983889943575546678946222, 5.74445460974792807070162263620, 6.94905873517783356369305612275, 7.61895749900089309366976577148, 8.361159967089034875319021366331

Graph of the $Z$-function along the critical line