Properties

Label 8-240e4-1.1-c2e4-0-2
Degree $8$
Conductor $3317760000$
Sign $1$
Analytic cond. $1828.87$
Root an. cond. $2.55724$
Motivic weight $2$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 8·5-s + 6·9-s − 2·25-s − 32·29-s + 200·41-s − 48·45-s − 172·49-s − 104·61-s + 27·81-s − 344·89-s − 128·101-s + 520·109-s − 20·121-s + 344·125-s + 127-s + 131-s + 137-s + 139-s + 256·145-s + 149-s + 151-s + 157-s + 163-s + 167-s + 508·169-s + 173-s + 179-s + ⋯
L(s)  = 1  − 8/5·5-s + 2/3·9-s − 0.0799·25-s − 1.10·29-s + 4.87·41-s − 1.06·45-s − 3.51·49-s − 1.70·61-s + 1/3·81-s − 3.86·89-s − 1.26·101-s + 4.77·109-s − 0.165·121-s + 2.75·125-s + 0.00787·127-s + 0.00763·131-s + 0.00729·137-s + 0.00719·139-s + 1.76·145-s + 0.00671·149-s + 0.00662·151-s + 0.00636·157-s + 0.00613·163-s + 0.00598·167-s + 3.00·169-s + 0.00578·173-s + 0.00558·179-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 3^{4} \cdot 5^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(3-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 3^{4} \cdot 5^{4}\right)^{s/2} \, \Gamma_{\C}(s+1)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{16} \cdot 3^{4} \cdot 5^{4}\)
Sign: $1$
Analytic conductor: \(1828.87\)
Root analytic conductor: \(2.55724\)
Motivic weight: \(2\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{16} \cdot 3^{4} \cdot 5^{4} ,\ ( \ : 1, 1, 1, 1 ),\ 1 )\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.9181302637\)
\(L(\frac12)\) \(\approx\) \(0.9181302637\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2$ \( ( 1 - p T^{2} )^{2} \)
5$C_2$ \( ( 1 + 4 T + p^{2} T^{2} )^{2} \)
good7$C_2^2$ \( ( 1 + 86 T^{2} + p^{4} T^{4} )^{2} \)
11$C_2^2$ \( ( 1 + 10 T^{2} + p^{4} T^{4} )^{2} \)
13$C_2^2$ \( ( 1 - 254 T^{2} + p^{4} T^{4} )^{2} \)
17$C_2^2$ \( ( 1 - 494 T^{2} + p^{4} T^{4} )^{2} \)
19$C_2^2$ \( ( 1 + 286 T^{2} + p^{4} T^{4} )^{2} \)
23$C_2^2$ \( ( 1 + 290 T^{2} + p^{4} T^{4} )^{2} \)
29$C_2$ \( ( 1 + 8 T + p^{2} T^{2} )^{4} \)
31$C_1$$\times$$C_1$ \( ( 1 - p T )^{4}( 1 + p T )^{4} \)
37$C_2^2$ \( ( 1 - 638 T^{2} + p^{4} T^{4} )^{2} \)
41$C_2$ \( ( 1 - 50 T + p^{2} T^{2} )^{4} \)
43$C_2^2$ \( ( 1 - 190 T^{2} + p^{4} T^{4} )^{2} \)
47$C_2^2$ \( ( 1 + 2066 T^{2} + p^{4} T^{4} )^{2} \)
53$C_2^2$ \( ( 1 - 4862 T^{2} + p^{4} T^{4} )^{2} \)
59$C_2^2$ \( ( 1 - 6710 T^{2} + p^{4} T^{4} )^{2} \)
61$C_2$ \( ( 1 + 26 T + p^{2} T^{2} )^{4} \)
67$C_2^2$ \( ( 1 + 5906 T^{2} + p^{4} T^{4} )^{2} \)
71$C_2^2$ \( ( 1 - 1010 T^{2} + p^{4} T^{4} )^{2} \)
73$C_2^2$ \( ( 1 + 5806 T^{2} + p^{4} T^{4} )^{2} \)
79$C_2$ \( ( 1 - 94 T + p^{2} T^{2} )^{2}( 1 + 94 T + p^{2} T^{2} )^{2} \)
83$C_2^2$ \( ( 1 - 3550 T^{2} + p^{4} T^{4} )^{2} \)
89$C_2$ \( ( 1 + 86 T + p^{2} T^{2} )^{4} \)
97$C_2^2$ \( ( 1 - 6722 T^{2} + p^{4} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.601960275856539373127998428097, −8.216481235622918693462660942337, −7.994127565974502589640118152274, −7.81490521542336588913280168592, −7.49246109314488562746666276733, −7.46416596975878565569260182820, −7.22125452367053712072624122484, −6.83716122833328569476025853666, −6.42307191133223129071561502552, −6.07130266966711418854556789538, −6.05610197200564358484132590882, −5.64009371386387508719230951587, −5.29043133128630150328629315793, −4.84132006420214184274432350303, −4.52755326457034555390583545300, −4.31335061594450515379549059910, −3.95676197980158678407653602038, −3.92551232536884664585227996651, −3.36126982935995182877524613785, −2.88173306175734402365578345380, −2.81529821858172308101933299975, −1.95146123508546104146320314791, −1.70813606476582332066516456832, −0.973815696874001550623032216805, −0.30179231113352374400280791126, 0.30179231113352374400280791126, 0.973815696874001550623032216805, 1.70813606476582332066516456832, 1.95146123508546104146320314791, 2.81529821858172308101933299975, 2.88173306175734402365578345380, 3.36126982935995182877524613785, 3.92551232536884664585227996651, 3.95676197980158678407653602038, 4.31335061594450515379549059910, 4.52755326457034555390583545300, 4.84132006420214184274432350303, 5.29043133128630150328629315793, 5.64009371386387508719230951587, 6.05610197200564358484132590882, 6.07130266966711418854556789538, 6.42307191133223129071561502552, 6.83716122833328569476025853666, 7.22125452367053712072624122484, 7.46416596975878565569260182820, 7.49246109314488562746666276733, 7.81490521542336588913280168592, 7.994127565974502589640118152274, 8.216481235622918693462660942337, 8.601960275856539373127998428097

Graph of the $Z$-function along the critical line