Properties

Label 8-240e4-1.1-c2e4-0-8
Degree $8$
Conductor $3317760000$
Sign $1$
Analytic cond. $1828.87$
Root an. cond. $2.55724$
Motivic weight $2$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 6·9-s − 32·13-s + 48·17-s + 10·25-s − 48·29-s + 80·37-s − 120·41-s + 52·49-s + 96·53-s + 56·61-s − 8·73-s + 27·81-s + 24·89-s − 56·97-s − 48·101-s + 280·109-s + 576·113-s + 192·117-s + 340·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s − 288·153-s + 157-s + ⋯
L(s)  = 1  − 2/3·9-s − 2.46·13-s + 2.82·17-s + 2/5·25-s − 1.65·29-s + 2.16·37-s − 2.92·41-s + 1.06·49-s + 1.81·53-s + 0.918·61-s − 0.109·73-s + 1/3·81-s + 0.269·89-s − 0.577·97-s − 0.475·101-s + 2.56·109-s + 5.09·113-s + 1.64·117-s + 2.80·121-s + 0.00787·127-s + 0.00763·131-s + 0.00729·137-s + 0.00719·139-s + 0.00671·149-s + 0.00662·151-s − 1.88·153-s + 0.00636·157-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 3^{4} \cdot 5^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(3-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 3^{4} \cdot 5^{4}\right)^{s/2} \, \Gamma_{\C}(s+1)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{16} \cdot 3^{4} \cdot 5^{4}\)
Sign: $1$
Analytic conductor: \(1828.87\)
Root analytic conductor: \(2.55724\)
Motivic weight: \(2\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{16} \cdot 3^{4} \cdot 5^{4} ,\ ( \ : 1, 1, 1, 1 ),\ 1 )\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(2.369716174\)
\(L(\frac12)\) \(\approx\) \(2.369716174\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2$ \( ( 1 + p T^{2} )^{2} \)
5$C_2$ \( ( 1 - p T^{2} )^{2} \)
good7$D_4\times C_2$ \( 1 - 52 T^{2} + 2598 T^{4} - 52 p^{4} T^{6} + p^{8} T^{8} \)
11$D_4\times C_2$ \( 1 - 340 T^{2} + 55302 T^{4} - 340 p^{4} T^{6} + p^{8} T^{8} \)
13$D_{4}$ \( ( 1 + 16 T + 222 T^{2} + 16 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
17$D_{4}$ \( ( 1 - 24 T + 542 T^{2} - 24 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
19$D_4\times C_2$ \( 1 - 868 T^{2} + 402918 T^{4} - 868 p^{4} T^{6} + p^{8} T^{8} \)
23$D_4\times C_2$ \( 1 - 100 T^{2} + 377862 T^{4} - 100 p^{4} T^{6} + p^{8} T^{8} \)
29$D_{4}$ \( ( 1 + 24 T + 1646 T^{2} + 24 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
31$D_4\times C_2$ \( 1 - 964 T^{2} + 927366 T^{4} - 964 p^{4} T^{6} + p^{8} T^{8} \)
37$D_{4}$ \( ( 1 - 40 T + 1518 T^{2} - 40 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
41$C_2$ \( ( 1 + 30 T + p^{2} T^{2} )^{4} \)
43$D_4\times C_2$ \( 1 - 5380 T^{2} + 13889382 T^{4} - 5380 p^{4} T^{6} + p^{8} T^{8} \)
47$D_4\times C_2$ \( 1 - 2212 T^{2} + 8033478 T^{4} - 2212 p^{4} T^{6} + p^{8} T^{8} \)
53$D_{4}$ \( ( 1 - 48 T + 4574 T^{2} - 48 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
59$D_4\times C_2$ \( 1 + 620 T^{2} + 23982342 T^{4} + 620 p^{4} T^{6} + p^{8} T^{8} \)
61$D_{4}$ \( ( 1 - 28 T + 1158 T^{2} - 28 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
67$D_4\times C_2$ \( 1 + 188 T^{2} - 19408602 T^{4} + 188 p^{4} T^{6} + p^{8} T^{8} \)
71$C_2^3$ \( 1 + 8060 T^{2} + 10662 p^{2} T^{4} + 8060 p^{4} T^{6} + p^{8} T^{8} \)
73$D_{4}$ \( ( 1 + 4 T + 9942 T^{2} + 4 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
79$D_4\times C_2$ \( 1 - 12868 T^{2} + 113720838 T^{4} - 12868 p^{4} T^{6} + p^{8} T^{8} \)
83$D_4\times C_2$ \( 1 - 19780 T^{2} + 177798822 T^{4} - 19780 p^{4} T^{6} + p^{8} T^{8} \)
89$D_{4}$ \( ( 1 - 12 T + 15158 T^{2} - 12 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
97$C_2$ \( ( 1 + 14 T + p^{2} T^{2} )^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.644515978466745917765062884235, −8.415162715502546197641717428944, −8.003355003461797680419747308944, −7.69382418144301866457884565608, −7.57458445716484285118464006591, −7.39681379910880963196435175438, −7.10882758471019661522553600375, −6.86598106796148264560872493952, −6.53511652046397327337993089806, −5.90058748072078028904481110090, −5.85049570954715614686803995000, −5.70426983897486499443157401130, −5.11867077292626081941876076488, −5.11662393693540468556568635754, −4.92384509019044727649073198166, −4.24343283940517143716101406408, −4.13303555463671937849870148844, −3.53208496918929497047413446254, −3.25127019077945428682781556632, −3.01732619337867202686063809411, −2.60834843336393715955041397678, −1.95610550847262223300549683189, −1.93185878518049828233458046547, −0.859092968332865621591703998275, −0.52142987771127098182874881750, 0.52142987771127098182874881750, 0.859092968332865621591703998275, 1.93185878518049828233458046547, 1.95610550847262223300549683189, 2.60834843336393715955041397678, 3.01732619337867202686063809411, 3.25127019077945428682781556632, 3.53208496918929497047413446254, 4.13303555463671937849870148844, 4.24343283940517143716101406408, 4.92384509019044727649073198166, 5.11662393693540468556568635754, 5.11867077292626081941876076488, 5.70426983897486499443157401130, 5.85049570954715614686803995000, 5.90058748072078028904481110090, 6.53511652046397327337993089806, 6.86598106796148264560872493952, 7.10882758471019661522553600375, 7.39681379910880963196435175438, 7.57458445716484285118464006591, 7.69382418144301866457884565608, 8.003355003461797680419747308944, 8.415162715502546197641717428944, 8.644515978466745917765062884235

Graph of the $Z$-function along the critical line