Properties

Label 8-240e4-1.1-c2e4-0-7
Degree $8$
Conductor $3317760000$
Sign $1$
Analytic cond. $1828.87$
Root an. cond. $2.55724$
Motivic weight $2$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·9-s + 24·19-s − 30·25-s − 136·31-s + 68·49-s + 296·61-s + 312·79-s − 77·81-s + 296·109-s + 324·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 388·169-s + 48·171-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + ⋯
L(s)  = 1  + 2/9·9-s + 1.26·19-s − 6/5·25-s − 4.38·31-s + 1.38·49-s + 4.85·61-s + 3.94·79-s − 0.950·81-s + 2.71·109-s + 2.67·121-s + 0.00787·127-s + 0.00763·131-s + 0.00729·137-s + 0.00719·139-s + 0.00671·149-s + 0.00662·151-s + 0.00636·157-s + 0.00613·163-s + 0.00598·167-s + 2.29·169-s + 0.280·171-s + 0.00578·173-s + 0.00558·179-s + 0.00552·181-s + 0.00523·191-s + 0.00518·193-s + 0.00507·197-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 3^{4} \cdot 5^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(3-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 3^{4} \cdot 5^{4}\right)^{s/2} \, \Gamma_{\C}(s+1)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{16} \cdot 3^{4} \cdot 5^{4}\)
Sign: $1$
Analytic conductor: \(1828.87\)
Root analytic conductor: \(2.55724\)
Motivic weight: \(2\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{16} \cdot 3^{4} \cdot 5^{4} ,\ ( \ : 1, 1, 1, 1 ),\ 1 )\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(2.581698761\)
\(L(\frac12)\) \(\approx\) \(2.581698761\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2^2$ \( 1 - 2 T^{2} + p^{4} T^{4} \)
5$C_2^2$ \( 1 + 6 p T^{2} + p^{4} T^{4} \)
good7$C_2^2$ \( ( 1 - 34 T^{2} + p^{4} T^{4} )^{2} \)
11$C_2^2$ \( ( 1 - 162 T^{2} + p^{4} T^{4} )^{2} \)
13$C_2^2$ \( ( 1 - 194 T^{2} + p^{4} T^{4} )^{2} \)
17$C_2^2$ \( ( 1 - 402 T^{2} + p^{4} T^{4} )^{2} \)
19$C_2$ \( ( 1 - 6 T + p^{2} T^{2} )^{4} \)
23$C_2^2$ \( ( 1 + 1038 T^{2} + p^{4} T^{4} )^{2} \)
29$C_2^2$ \( ( 1 - 962 T^{2} + p^{4} T^{4} )^{2} \)
31$C_2$ \( ( 1 + 34 T + p^{2} T^{2} )^{4} \)
37$C_2^2$ \( ( 1 - 802 T^{2} + p^{4} T^{4} )^{2} \)
41$C_2^2$ \( ( 1 - 3042 T^{2} + p^{4} T^{4} )^{2} \)
43$C_2^2$ \( ( 1 - 2914 T^{2} + p^{4} T^{4} )^{2} \)
47$C_2^2$ \( ( 1 + 4398 T^{2} + p^{4} T^{4} )^{2} \)
53$C_2^2$ \( ( 1 + 3998 T^{2} + p^{4} T^{4} )^{2} \)
59$C_2^2$ \( ( 1 + 2718 T^{2} + p^{4} T^{4} )^{2} \)
61$C_2$ \( ( 1 - 74 T + p^{2} T^{2} )^{4} \)
67$C_2^2$ \( ( 1 - 514 T^{2} + p^{4} T^{4} )^{2} \)
71$C_2^2$ \( ( 1 - 7202 T^{2} + p^{4} T^{4} )^{2} \)
73$C_2^2$ \( ( 1 - 7522 T^{2} + p^{4} T^{4} )^{2} \)
79$C_2$ \( ( 1 - 78 T + p^{2} T^{2} )^{4} \)
83$C_2^2$ \( ( 1 + 3198 T^{2} + p^{4} T^{4} )^{2} \)
89$C_2^2$ \( ( 1 - 15522 T^{2} + p^{4} T^{4} )^{2} \)
97$C_2^2$ \( ( 1 - 17794 T^{2} + p^{4} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.474650074506237418024967678010, −8.373462495102438507997040234245, −8.304753875661157573872469685996, −7.59472639468324016279764599133, −7.48461551436711410171882239417, −7.37274004142461945432821216038, −7.05456009327492970399079313917, −6.97291429084686988208839233027, −6.44437927171065323148127677280, −6.14750962579094369219611751526, −5.70908979432120547810510263524, −5.63065868382655233141232291160, −5.27800358351991013344095605343, −5.20755201203946116914070106762, −4.72115806027518190795961766970, −4.29089109209537392358797095286, −3.80620736054263723308705339874, −3.68139811188839564369933535272, −3.52913037406747222091197142703, −3.07556930441703235749610654358, −2.31988866468879359275629985219, −1.96939373374462807014006082662, −1.95615244816119335513256575703, −0.966241623072995517799440071720, −0.49902437007466475314303390076, 0.49902437007466475314303390076, 0.966241623072995517799440071720, 1.95615244816119335513256575703, 1.96939373374462807014006082662, 2.31988866468879359275629985219, 3.07556930441703235749610654358, 3.52913037406747222091197142703, 3.68139811188839564369933535272, 3.80620736054263723308705339874, 4.29089109209537392358797095286, 4.72115806027518190795961766970, 5.20755201203946116914070106762, 5.27800358351991013344095605343, 5.63065868382655233141232291160, 5.70908979432120547810510263524, 6.14750962579094369219611751526, 6.44437927171065323148127677280, 6.97291429084686988208839233027, 7.05456009327492970399079313917, 7.37274004142461945432821216038, 7.48461551436711410171882239417, 7.59472639468324016279764599133, 8.304753875661157573872469685996, 8.373462495102438507997040234245, 8.474650074506237418024967678010

Graph of the $Z$-function along the critical line