Properties

Label 8-240e4-1.1-c1e4-0-9
Degree $8$
Conductor $3317760000$
Sign $1$
Analytic cond. $13.4881$
Root an. cond. $1.38434$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·3-s + 4·7-s + 8·9-s + 16·21-s − 8·25-s + 12·27-s + 8·31-s + 24·37-s − 24·43-s + 8·49-s − 24·61-s + 32·63-s + 16·67-s − 20·73-s − 32·75-s + 23·81-s + 32·93-s + 12·97-s − 4·103-s + 96·111-s + 40·121-s + 127-s − 96·129-s + 131-s + 137-s + 139-s + 32·147-s + ⋯
L(s)  = 1  + 2.30·3-s + 1.51·7-s + 8/3·9-s + 3.49·21-s − 8/5·25-s + 2.30·27-s + 1.43·31-s + 3.94·37-s − 3.65·43-s + 8/7·49-s − 3.07·61-s + 4.03·63-s + 1.95·67-s − 2.34·73-s − 3.69·75-s + 23/9·81-s + 3.31·93-s + 1.21·97-s − 0.394·103-s + 9.11·111-s + 3.63·121-s + 0.0887·127-s − 8.45·129-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 2.63·147-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 3^{4} \cdot 5^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 3^{4} \cdot 5^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{16} \cdot 3^{4} \cdot 5^{4}\)
Sign: $1$
Analytic conductor: \(13.4881\)
Root analytic conductor: \(1.38434\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{16} \cdot 3^{4} \cdot 5^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(4.884029338\)
\(L(\frac12)\) \(\approx\) \(4.884029338\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2^2$ \( 1 - 4 T + 8 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
5$C_2^2$ \( 1 + 8 T^{2} + p^{2} T^{4} \)
good7$C_2^2$ \( ( 1 - 2 T + 2 T^{2} - 2 p T^{3} + p^{2} T^{4} )^{2} \)
11$C_2^2$ \( ( 1 - 20 T^{2} + p^{2} T^{4} )^{2} \)
13$C_2^2$ \( ( 1 + p^{2} T^{4} )^{2} \)
17$C_2^2$$\times$$C_2^2$ \( ( 1 - 16 T^{2} + p^{2} T^{4} )( 1 + 16 T^{2} + p^{2} T^{4} ) \)
19$C_2^2$ \( ( 1 - 22 T^{2} + p^{2} T^{4} )^{2} \)
23$C_2^3$ \( 1 - 158 T^{4} + p^{4} T^{8} \)
29$C_2^2$ \( ( 1 + 8 T^{2} + p^{2} T^{4} )^{2} \)
31$C_2$ \( ( 1 - 2 T + p T^{2} )^{4} \)
37$C_2^2$ \( ( 1 - 12 T + 72 T^{2} - 12 p T^{3} + p^{2} T^{4} )^{2} \)
41$C_2^2$ \( ( 1 - 50 T^{2} + p^{2} T^{4} )^{2} \)
43$C_2^2$ \( ( 1 + 12 T + 72 T^{2} + 12 p T^{3} + p^{2} T^{4} )^{2} \)
47$C_2^2$ \( ( 1 + p^{2} T^{4} )^{2} \)
53$C_2^2$$\times$$C_2^2$ \( ( 1 - 56 T^{2} + p^{2} T^{4} )( 1 + 56 T^{2} + p^{2} T^{4} ) \)
59$C_2^2$ \( ( 1 + 20 T^{2} + p^{2} T^{4} )^{2} \)
61$C_2$ \( ( 1 + 6 T + p T^{2} )^{4} \)
67$C_2^2$ \( ( 1 - 8 T + 32 T^{2} - 8 p T^{3} + p^{2} T^{4} )^{2} \)
71$C_2^2$ \( ( 1 + 58 T^{2} + p^{2} T^{4} )^{2} \)
73$C_2$ \( ( 1 - 6 T + p T^{2} )^{2}( 1 + 16 T + p T^{2} )^{2} \)
79$C_2^2$ \( ( 1 - 122 T^{2} + p^{2} T^{4} )^{2} \)
83$C_2^3$ \( 1 - 13294 T^{4} + p^{4} T^{8} \)
89$C_2^2$ \( ( 1 + 170 T^{2} + p^{2} T^{4} )^{2} \)
97$C_2^2$ \( ( 1 - 6 T + 18 T^{2} - 6 p T^{3} + p^{2} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.656557568382396809254784069579, −8.567044678880102270845229872779, −8.220307151502032302784688510121, −8.138030654360897630184246494722, −8.087185093384237320099461870712, −7.57450160831616388846090142798, −7.41233023072329660843655268632, −7.38028564105894202736701374826, −6.84125817143758795961452044454, −6.37190787957464485731840504226, −6.23713535916788691914735255083, −5.80466371356607943799907301478, −5.79013113471455402614509553785, −4.95608830693979098888685878477, −4.69688962225048418572061635101, −4.64530619211594333345999103072, −4.45151706131114117735597423237, −3.80313014105359759317226301696, −3.52772229754449689331233736598, −3.31221585966140152183897399587, −2.74865019178506398584206151122, −2.48219697651783341661105068535, −2.18348590428698455706011520867, −1.61753522619537926076848143016, −1.22294184313253671895092966857, 1.22294184313253671895092966857, 1.61753522619537926076848143016, 2.18348590428698455706011520867, 2.48219697651783341661105068535, 2.74865019178506398584206151122, 3.31221585966140152183897399587, 3.52772229754449689331233736598, 3.80313014105359759317226301696, 4.45151706131114117735597423237, 4.64530619211594333345999103072, 4.69688962225048418572061635101, 4.95608830693979098888685878477, 5.79013113471455402614509553785, 5.80466371356607943799907301478, 6.23713535916788691914735255083, 6.37190787957464485731840504226, 6.84125817143758795961452044454, 7.38028564105894202736701374826, 7.41233023072329660843655268632, 7.57450160831616388846090142798, 8.087185093384237320099461870712, 8.138030654360897630184246494722, 8.220307151502032302784688510121, 8.567044678880102270845229872779, 8.656557568382396809254784069579

Graph of the $Z$-function along the critical line