Properties

Label 28-24e14-1.1-c7e14-0-0
Degree $28$
Conductor $2.104\times 10^{19}$
Sign $1$
Analytic cond. $1.77263\times 10^{12}$
Root an. cond. $2.73810$
Motivic weight $7$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 14·2-s − 6·4-s + 1.37e3·7-s + 856·8-s − 5.10e3·9-s − 1.92e4·14-s − 1.20e4·16-s − 2.90e3·17-s + 7.14e4·18-s − 1.43e5·23-s + 4.45e5·25-s − 8.23e3·28-s − 8.94e4·31-s − 5.88e4·32-s + 4.07e4·34-s + 3.06e4·36-s − 4.41e5·41-s + 2.00e6·46-s − 1.05e6·47-s − 3.74e6·49-s − 6.23e6·50-s + 1.17e6·56-s + 1.25e6·62-s − 7.00e6·63-s + 3.26e6·64-s + 1.74e4·68-s + 5.17e6·71-s + ⋯
L(s)  = 1  − 1.23·2-s − 0.0468·4-s + 1.51·7-s + 0.591·8-s − 7/3·9-s − 1.87·14-s − 0.733·16-s − 0.143·17-s + 2.88·18-s − 2.45·23-s + 5.70·25-s − 0.0708·28-s − 0.539·31-s − 0.317·32-s + 0.177·34-s + 7/64·36-s − 0.999·41-s + 3.04·46-s − 1.48·47-s − 4.54·49-s − 7.05·50-s + 0.893·56-s + 0.667·62-s − 3.52·63-s + 1.55·64-s + 0.00672·68-s + 1.71·71-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{42} \cdot 3^{14}\right)^{s/2} \, \Gamma_{\C}(s)^{14} \, L(s)\cr=\mathstrut & \,\Lambda(8-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{42} \cdot 3^{14}\right)^{s/2} \, \Gamma_{\C}(s+7/2)^{14} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(28\)
Conductor: \(2^{42} \cdot 3^{14}\)
Sign: $1$
Analytic conductor: \(1.77263\times 10^{12}\)
Root analytic conductor: \(2.73810\)
Motivic weight: \(7\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((28,\ 2^{42} \cdot 3^{14} ,\ ( \ : [7/2]^{14} ),\ 1 )\)

Particular Values

\(L(4)\) \(\approx\) \(0.01742716315\)
\(L(\frac12)\) \(\approx\) \(0.01742716315\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + 7 p T + 101 p T^{2} + 257 p^{3} T^{3} + 1877 p^{4} T^{4} + 3805 p^{7} T^{5} + 10209 p^{9} T^{6} + 9061 p^{13} T^{7} + 10209 p^{16} T^{8} + 3805 p^{21} T^{9} + 1877 p^{25} T^{10} + 257 p^{31} T^{11} + 101 p^{36} T^{12} + 7 p^{43} T^{13} + p^{49} T^{14} \)
3 \( ( 1 + p^{6} T^{2} )^{7} \)
good5 \( 1 - 445562 T^{2} + 95581517971 T^{4} - 14439744600730244 T^{6} + 14777008747923864941 p^{3} T^{8} - \)\(32\!\cdots\!98\)\( p^{4} T^{10} + \)\(12\!\cdots\!27\)\( p^{6} T^{12} - \)\(40\!\cdots\!56\)\( p^{8} T^{14} + \)\(12\!\cdots\!27\)\( p^{20} T^{16} - \)\(32\!\cdots\!98\)\( p^{32} T^{18} + 14777008747923864941 p^{45} T^{20} - 14439744600730244 p^{56} T^{22} + 95581517971 p^{70} T^{24} - 445562 p^{84} T^{26} + p^{98} T^{28} \)
7 \( ( 1 - 2 p^{3} T + 2578165 T^{2} - 1521968292 T^{3} + 413425553031 p T^{4} - 1670463194093586 T^{5} + 2150164822127173261 T^{6} - \)\(14\!\cdots\!28\)\( T^{7} + 2150164822127173261 p^{7} T^{8} - 1670463194093586 p^{14} T^{9} + 413425553031 p^{22} T^{10} - 1521968292 p^{28} T^{11} + 2578165 p^{35} T^{12} - 2 p^{45} T^{13} + p^{49} T^{14} )^{2} \)
11 \( 1 - 126612650 T^{2} + 7858670884605619 T^{4} - \)\(31\!\cdots\!48\)\( T^{6} + \)\(91\!\cdots\!17\)\( T^{8} - \)\(20\!\cdots\!90\)\( T^{10} + \)\(40\!\cdots\!27\)\( T^{12} - \)\(63\!\cdots\!32\)\( p^{2} T^{14} + \)\(40\!\cdots\!27\)\( p^{14} T^{16} - \)\(20\!\cdots\!90\)\( p^{28} T^{18} + \)\(91\!\cdots\!17\)\( p^{42} T^{20} - \)\(31\!\cdots\!48\)\( p^{56} T^{22} + 7858670884605619 p^{70} T^{24} - 126612650 p^{84} T^{26} + p^{98} T^{28} \)
13 \( 1 - 387011990 T^{2} + 68908126519682275 T^{4} - \)\(76\!\cdots\!28\)\( T^{6} + \)\(63\!\cdots\!97\)\( T^{8} - \)\(48\!\cdots\!86\)\( T^{10} + \)\(37\!\cdots\!83\)\( T^{12} - \)\(25\!\cdots\!72\)\( T^{14} + \)\(37\!\cdots\!83\)\( p^{14} T^{16} - \)\(48\!\cdots\!86\)\( p^{28} T^{18} + \)\(63\!\cdots\!97\)\( p^{42} T^{20} - \)\(76\!\cdots\!28\)\( p^{56} T^{22} + 68908126519682275 p^{70} T^{24} - 387011990 p^{84} T^{26} + p^{98} T^{28} \)
17 \( ( 1 + 1454 T + 1716640747 T^{2} + 5874996114796 T^{3} + 1576054531620987017 T^{4} + \)\(56\!\cdots\!70\)\( T^{5} + \)\(93\!\cdots\!91\)\( T^{6} + \)\(30\!\cdots\!24\)\( T^{7} + \)\(93\!\cdots\!91\)\( p^{7} T^{8} + \)\(56\!\cdots\!70\)\( p^{14} T^{9} + 1576054531620987017 p^{21} T^{10} + 5874996114796 p^{28} T^{11} + 1716640747 p^{35} T^{12} + 1454 p^{42} T^{13} + p^{49} T^{14} )^{2} \)
19 \( 1 - 6974011850 T^{2} + 24092658824990296867 T^{4} - \)\(55\!\cdots\!68\)\( T^{6} + \)\(96\!\cdots\!09\)\( T^{8} - \)\(13\!\cdots\!10\)\( T^{10} + \)\(15\!\cdots\!79\)\( T^{12} - \)\(15\!\cdots\!56\)\( T^{14} + \)\(15\!\cdots\!79\)\( p^{14} T^{16} - \)\(13\!\cdots\!10\)\( p^{28} T^{18} + \)\(96\!\cdots\!09\)\( p^{42} T^{20} - \)\(55\!\cdots\!68\)\( p^{56} T^{22} + 24092658824990296867 p^{70} T^{24} - 6974011850 p^{84} T^{26} + p^{98} T^{28} \)
23 \( ( 1 + 71708 T + 8440179361 T^{2} + 617221190675032 T^{3} + 59565824725230322613 T^{4} + \)\(38\!\cdots\!00\)\( T^{5} + \)\(26\!\cdots\!93\)\( T^{6} + \)\(15\!\cdots\!24\)\( T^{7} + \)\(26\!\cdots\!93\)\( p^{7} T^{8} + \)\(38\!\cdots\!00\)\( p^{14} T^{9} + 59565824725230322613 p^{21} T^{10} + 617221190675032 p^{28} T^{11} + 8440179361 p^{35} T^{12} + 71708 p^{42} T^{13} + p^{49} T^{14} )^{2} \)
29 \( 1 - 131972594954 T^{2} + \)\(90\!\cdots\!15\)\( T^{4} - \)\(42\!\cdots\!72\)\( T^{6} + \)\(15\!\cdots\!49\)\( T^{8} - \)\(42\!\cdots\!06\)\( T^{10} + \)\(96\!\cdots\!91\)\( T^{12} - \)\(18\!\cdots\!28\)\( T^{14} + \)\(96\!\cdots\!91\)\( p^{14} T^{16} - \)\(42\!\cdots\!06\)\( p^{28} T^{18} + \)\(15\!\cdots\!49\)\( p^{42} T^{20} - \)\(42\!\cdots\!72\)\( p^{56} T^{22} + \)\(90\!\cdots\!15\)\( p^{70} T^{24} - 131972594954 p^{84} T^{26} + p^{98} T^{28} \)
31 \( ( 1 + 44734 T + 3351339091 p T^{2} + 1878217501397540 T^{3} + \)\(54\!\cdots\!97\)\( T^{4} - \)\(16\!\cdots\!38\)\( T^{5} + \)\(19\!\cdots\!65\)\( T^{6} - \)\(22\!\cdots\!20\)\( T^{7} + \)\(19\!\cdots\!65\)\( p^{7} T^{8} - \)\(16\!\cdots\!38\)\( p^{14} T^{9} + \)\(54\!\cdots\!97\)\( p^{21} T^{10} + 1878217501397540 p^{28} T^{11} + 3351339091 p^{36} T^{12} + 44734 p^{42} T^{13} + p^{49} T^{14} )^{2} \)
37 \( 1 - 856038434294 T^{2} + \)\(35\!\cdots\!75\)\( T^{4} - \)\(98\!\cdots\!16\)\( T^{6} + \)\(19\!\cdots\!85\)\( T^{8} - \)\(31\!\cdots\!86\)\( T^{10} + \)\(39\!\cdots\!27\)\( T^{12} - \)\(41\!\cdots\!48\)\( T^{14} + \)\(39\!\cdots\!27\)\( p^{14} T^{16} - \)\(31\!\cdots\!86\)\( p^{28} T^{18} + \)\(19\!\cdots\!85\)\( p^{42} T^{20} - \)\(98\!\cdots\!16\)\( p^{56} T^{22} + \)\(35\!\cdots\!75\)\( p^{70} T^{24} - 856038434294 p^{84} T^{26} + p^{98} T^{28} \)
41 \( ( 1 + 220642 T + 805010558083 T^{2} + 256070152586388116 T^{3} + \)\(34\!\cdots\!41\)\( T^{4} + \)\(10\!\cdots\!18\)\( T^{5} + \)\(99\!\cdots\!91\)\( T^{6} + \)\(26\!\cdots\!36\)\( T^{7} + \)\(99\!\cdots\!91\)\( p^{7} T^{8} + \)\(10\!\cdots\!18\)\( p^{14} T^{9} + \)\(34\!\cdots\!41\)\( p^{21} T^{10} + 256070152586388116 p^{28} T^{11} + 805010558083 p^{35} T^{12} + 220642 p^{42} T^{13} + p^{49} T^{14} )^{2} \)
43 \( 1 - 1167136384250 T^{2} + \)\(84\!\cdots\!19\)\( T^{4} - \)\(44\!\cdots\!04\)\( T^{6} + \)\(19\!\cdots\!85\)\( T^{8} - \)\(71\!\cdots\!86\)\( T^{10} + \)\(23\!\cdots\!47\)\( T^{12} - \)\(67\!\cdots\!20\)\( T^{14} + \)\(23\!\cdots\!47\)\( p^{14} T^{16} - \)\(71\!\cdots\!86\)\( p^{28} T^{18} + \)\(19\!\cdots\!85\)\( p^{42} T^{20} - \)\(44\!\cdots\!04\)\( p^{56} T^{22} + \)\(84\!\cdots\!19\)\( p^{70} T^{24} - 1167136384250 p^{84} T^{26} + p^{98} T^{28} \)
47 \( ( 1 + 528204 T + 1304181982841 T^{2} + 1396775026647992952 T^{3} + \)\(11\!\cdots\!01\)\( T^{4} + \)\(11\!\cdots\!48\)\( T^{5} + \)\(10\!\cdots\!97\)\( T^{6} + \)\(58\!\cdots\!04\)\( T^{7} + \)\(10\!\cdots\!97\)\( p^{7} T^{8} + \)\(11\!\cdots\!48\)\( p^{14} T^{9} + \)\(11\!\cdots\!01\)\( p^{21} T^{10} + 1396775026647992952 p^{28} T^{11} + 1304181982841 p^{35} T^{12} + 528204 p^{42} T^{13} + p^{49} T^{14} )^{2} \)
53 \( 1 - 6871654175354 T^{2} + \)\(23\!\cdots\!55\)\( T^{4} - \)\(56\!\cdots\!16\)\( T^{6} + \)\(10\!\cdots\!25\)\( T^{8} - \)\(16\!\cdots\!86\)\( T^{10} + \)\(23\!\cdots\!07\)\( T^{12} - \)\(30\!\cdots\!88\)\( T^{14} + \)\(23\!\cdots\!07\)\( p^{14} T^{16} - \)\(16\!\cdots\!86\)\( p^{28} T^{18} + \)\(10\!\cdots\!25\)\( p^{42} T^{20} - \)\(56\!\cdots\!16\)\( p^{56} T^{22} + \)\(23\!\cdots\!55\)\( p^{70} T^{24} - 6871654175354 p^{84} T^{26} + p^{98} T^{28} \)
59 \( 1 - 9783224696858 T^{2} + \)\(58\!\cdots\!71\)\( T^{4} - \)\(24\!\cdots\!08\)\( T^{6} + \)\(78\!\cdots\!05\)\( T^{8} - \)\(34\!\cdots\!18\)\( p T^{10} + \)\(47\!\cdots\!59\)\( T^{12} - \)\(11\!\cdots\!36\)\( T^{14} + \)\(47\!\cdots\!59\)\( p^{14} T^{16} - \)\(34\!\cdots\!18\)\( p^{29} T^{18} + \)\(78\!\cdots\!05\)\( p^{42} T^{20} - \)\(24\!\cdots\!08\)\( p^{56} T^{22} + \)\(58\!\cdots\!71\)\( p^{70} T^{24} - 9783224696858 p^{84} T^{26} + p^{98} T^{28} \)
61 \( 1 - 26713863605222 T^{2} + \)\(33\!\cdots\!19\)\( T^{4} - \)\(26\!\cdots\!04\)\( T^{6} + \)\(14\!\cdots\!33\)\( T^{8} - \)\(67\!\cdots\!58\)\( T^{10} + \)\(25\!\cdots\!03\)\( T^{12} - \)\(83\!\cdots\!44\)\( T^{14} + \)\(25\!\cdots\!03\)\( p^{14} T^{16} - \)\(67\!\cdots\!58\)\( p^{28} T^{18} + \)\(14\!\cdots\!33\)\( p^{42} T^{20} - \)\(26\!\cdots\!04\)\( p^{56} T^{22} + \)\(33\!\cdots\!19\)\( p^{70} T^{24} - 26713863605222 p^{84} T^{26} + p^{98} T^{28} \)
67 \( 1 - 42926594518442 T^{2} + \)\(97\!\cdots\!99\)\( T^{4} - \)\(14\!\cdots\!60\)\( T^{6} + \)\(17\!\cdots\!33\)\( T^{8} - \)\(16\!\cdots\!82\)\( T^{10} + \)\(12\!\cdots\!95\)\( T^{12} - \)\(81\!\cdots\!52\)\( T^{14} + \)\(12\!\cdots\!95\)\( p^{14} T^{16} - \)\(16\!\cdots\!82\)\( p^{28} T^{18} + \)\(17\!\cdots\!33\)\( p^{42} T^{20} - \)\(14\!\cdots\!60\)\( p^{56} T^{22} + \)\(97\!\cdots\!99\)\( p^{70} T^{24} - 42926594518442 p^{84} T^{26} + p^{98} T^{28} \)
71 \( ( 1 - 2586348 T + 45775649603153 T^{2} - \)\(10\!\cdots\!00\)\( T^{3} + \)\(10\!\cdots\!21\)\( T^{4} - \)\(21\!\cdots\!72\)\( T^{5} + \)\(14\!\cdots\!09\)\( T^{6} - \)\(24\!\cdots\!88\)\( T^{7} + \)\(14\!\cdots\!09\)\( p^{7} T^{8} - \)\(21\!\cdots\!72\)\( p^{14} T^{9} + \)\(10\!\cdots\!21\)\( p^{21} T^{10} - \)\(10\!\cdots\!00\)\( p^{28} T^{11} + 45775649603153 p^{35} T^{12} - 2586348 p^{42} T^{13} + p^{49} T^{14} )^{2} \)
73 \( ( 1 + 2723098 T + 38312704682563 T^{2} + 83515159987399400068 T^{3} + \)\(83\!\cdots\!09\)\( T^{4} + \)\(14\!\cdots\!06\)\( T^{5} + \)\(12\!\cdots\!59\)\( T^{6} + \)\(19\!\cdots\!00\)\( T^{7} + \)\(12\!\cdots\!59\)\( p^{7} T^{8} + \)\(14\!\cdots\!06\)\( p^{14} T^{9} + \)\(83\!\cdots\!09\)\( p^{21} T^{10} + 83515159987399400068 p^{28} T^{11} + 38312704682563 p^{35} T^{12} + 2723098 p^{42} T^{13} + p^{49} T^{14} )^{2} \)
79 \( ( 1 + 7186774 T + 105650603277469 T^{2} + \)\(49\!\cdots\!68\)\( T^{3} + \)\(43\!\cdots\!13\)\( T^{4} + \)\(14\!\cdots\!10\)\( T^{5} + \)\(10\!\cdots\!25\)\( T^{6} + \)\(30\!\cdots\!36\)\( T^{7} + \)\(10\!\cdots\!25\)\( p^{7} T^{8} + \)\(14\!\cdots\!10\)\( p^{14} T^{9} + \)\(43\!\cdots\!13\)\( p^{21} T^{10} + \)\(49\!\cdots\!68\)\( p^{28} T^{11} + 105650603277469 p^{35} T^{12} + 7186774 p^{42} T^{13} + p^{49} T^{14} )^{2} \)
83 \( 1 - 148527772994618 T^{2} + \)\(11\!\cdots\!55\)\( T^{4} - \)\(65\!\cdots\!68\)\( T^{6} + \)\(28\!\cdots\!13\)\( T^{8} - \)\(10\!\cdots\!42\)\( T^{10} + \)\(33\!\cdots\!55\)\( T^{12} - \)\(95\!\cdots\!24\)\( T^{14} + \)\(33\!\cdots\!55\)\( p^{14} T^{16} - \)\(10\!\cdots\!42\)\( p^{28} T^{18} + \)\(28\!\cdots\!13\)\( p^{42} T^{20} - \)\(65\!\cdots\!68\)\( p^{56} T^{22} + \)\(11\!\cdots\!55\)\( p^{70} T^{24} - 148527772994618 p^{84} T^{26} + p^{98} T^{28} \)
89 \( ( 1 + 5976310 T + 88567149413395 T^{2} + \)\(34\!\cdots\!52\)\( T^{3} + \)\(24\!\cdots\!97\)\( T^{4} - \)\(58\!\cdots\!66\)\( T^{5} - \)\(32\!\cdots\!17\)\( T^{6} - \)\(90\!\cdots\!92\)\( T^{7} - \)\(32\!\cdots\!17\)\( p^{7} T^{8} - \)\(58\!\cdots\!66\)\( p^{14} T^{9} + \)\(24\!\cdots\!97\)\( p^{21} T^{10} + \)\(34\!\cdots\!52\)\( p^{28} T^{11} + 88567149413395 p^{35} T^{12} + 5976310 p^{42} T^{13} + p^{49} T^{14} )^{2} \)
97 \( ( 1 - 66866 T + 239738062759867 T^{2} - 35467286602626108564 T^{3} + \)\(36\!\cdots\!25\)\( T^{4} + \)\(10\!\cdots\!02\)\( T^{5} + \)\(38\!\cdots\!03\)\( T^{6} + \)\(18\!\cdots\!76\)\( T^{7} + \)\(38\!\cdots\!03\)\( p^{7} T^{8} + \)\(10\!\cdots\!02\)\( p^{14} T^{9} + \)\(36\!\cdots\!25\)\( p^{21} T^{10} - 35467286602626108564 p^{28} T^{11} + 239738062759867 p^{35} T^{12} - 66866 p^{42} T^{13} + p^{49} T^{14} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{28} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−4.52204278225365084434455423160, −4.49135763595307966593538620898, −4.48033044127846278033921190528, −4.32934517007049713820822945505, −4.00446098614917634854327719226, −3.58640657830405338134316573654, −3.43479182876951135247255595750, −3.30199613959554828324084689747, −3.20152666435461835305238034415, −3.16466104258851714977611655734, −3.02827804385519465888236066080, −2.79094716188246887088337817399, −2.71488831380661857253336357820, −2.19162229467240421196006453914, −1.98325004766348208476662618392, −1.94126982389817703782124886133, −1.82755423495537508129532694725, −1.62880546423282170437994149029, −1.55093232005834510317091209817, −0.983594728582720254391568536215, −0.899366050337093792132738692411, −0.67861067296393488639081227159, −0.58389315225379174287216733197, −0.24793895676006740432313063532, −0.02189198608018449540391208970, 0.02189198608018449540391208970, 0.24793895676006740432313063532, 0.58389315225379174287216733197, 0.67861067296393488639081227159, 0.899366050337093792132738692411, 0.983594728582720254391568536215, 1.55093232005834510317091209817, 1.62880546423282170437994149029, 1.82755423495537508129532694725, 1.94126982389817703782124886133, 1.98325004766348208476662618392, 2.19162229467240421196006453914, 2.71488831380661857253336357820, 2.79094716188246887088337817399, 3.02827804385519465888236066080, 3.16466104258851714977611655734, 3.20152666435461835305238034415, 3.30199613959554828324084689747, 3.43479182876951135247255595750, 3.58640657830405338134316573654, 4.00446098614917634854327719226, 4.32934517007049713820822945505, 4.48033044127846278033921190528, 4.49135763595307966593538620898, 4.52204278225365084434455423160

Graph of the $Z$-function along the critical line

Plot not available for L-functions of degree greater than 10.