Properties

Label 4-2394e2-1.1-c1e2-0-17
Degree $4$
Conductor $5731236$
Sign $1$
Analytic cond. $365.428$
Root an. cond. $4.37220$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s + 3·4-s − 5-s + 2·7-s + 4·8-s − 2·10-s − 7·11-s + 6·13-s + 4·14-s + 5·16-s + 4·17-s − 2·19-s − 3·20-s − 14·22-s − 2·23-s + 2·25-s + 12·26-s + 6·28-s + 11·29-s + 8·31-s + 6·32-s + 8·34-s − 2·35-s + 3·37-s − 4·38-s − 4·40-s + 5·41-s + ⋯
L(s)  = 1  + 1.41·2-s + 3/2·4-s − 0.447·5-s + 0.755·7-s + 1.41·8-s − 0.632·10-s − 2.11·11-s + 1.66·13-s + 1.06·14-s + 5/4·16-s + 0.970·17-s − 0.458·19-s − 0.670·20-s − 2.98·22-s − 0.417·23-s + 2/5·25-s + 2.35·26-s + 1.13·28-s + 2.04·29-s + 1.43·31-s + 1.06·32-s + 1.37·34-s − 0.338·35-s + 0.493·37-s − 0.648·38-s − 0.632·40-s + 0.780·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5731236 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5731236 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(5731236\)    =    \(2^{2} \cdot 3^{4} \cdot 7^{2} \cdot 19^{2}\)
Sign: $1$
Analytic conductor: \(365.428\)
Root analytic conductor: \(4.37220\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 5731236,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(7.693905730\)
\(L(\frac12)\) \(\approx\) \(7.693905730\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( ( 1 - T )^{2} \)
3 \( 1 \)
7$C_1$ \( ( 1 - T )^{2} \)
19$C_1$ \( ( 1 + T )^{2} \)
good5$D_{4}$ \( 1 + T - T^{2} + p T^{3} + p^{2} T^{4} \)
11$D_{4}$ \( 1 + 7 T + 3 p T^{2} + 7 p T^{3} + p^{2} T^{4} \)
13$D_{4}$ \( 1 - 6 T + 30 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
17$D_{4}$ \( 1 - 4 T + 18 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
23$C_2^2$ \( 1 + 2 T + 2 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
29$D_{4}$ \( 1 - 11 T + 77 T^{2} - 11 p T^{3} + p^{2} T^{4} \)
31$D_{4}$ \( 1 - 8 T + 58 T^{2} - 8 p T^{3} + p^{2} T^{4} \)
37$D_{4}$ \( 1 - 3 T + 65 T^{2} - 3 p T^{3} + p^{2} T^{4} \)
41$D_{4}$ \( 1 - 5 T + 27 T^{2} - 5 p T^{3} + p^{2} T^{4} \)
43$D_{4}$ \( 1 + 13 T + 127 T^{2} + 13 p T^{3} + p^{2} T^{4} \)
47$D_{4}$ \( 1 - T + 83 T^{2} - p T^{3} + p^{2} T^{4} \)
53$D_{4}$ \( 1 - 25 T + 261 T^{2} - 25 p T^{3} + p^{2} T^{4} \)
59$D_{4}$ \( 1 - 11 T + 137 T^{2} - 11 p T^{3} + p^{2} T^{4} \)
61$D_{4}$ \( 1 - 11 T + 91 T^{2} - 11 p T^{3} + p^{2} T^{4} \)
67$D_{4}$ \( 1 - 4 T + 58 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
71$D_{4}$ \( 1 + 3 T - 67 T^{2} + 3 p T^{3} + p^{2} T^{4} \)
73$D_{4}$ \( 1 + 10 T + 166 T^{2} + 10 p T^{3} + p^{2} T^{4} \)
79$D_{4}$ \( 1 + 11 T + 127 T^{2} + 11 p T^{3} + p^{2} T^{4} \)
83$C_2^2$ \( 1 + 86 T^{2} + p^{2} T^{4} \)
89$D_{4}$ \( 1 - 5 T + 183 T^{2} - 5 p T^{3} + p^{2} T^{4} \)
97$D_{4}$ \( 1 - T + 183 T^{2} - p T^{3} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.735912427785060027200071700491, −8.572417015715651033150574995106, −8.394723335542688423890482660872, −7.943267884736368674291763708879, −7.66560285481341894954541045845, −7.19989190130707047104776269913, −6.66757177527337767734633191359, −6.45455863470615685828068501095, −5.71953682293020473232997294757, −5.69059916047118335369982586535, −5.14738887025707870184973032707, −4.86345975302589407860331433156, −4.29666128466038975278772245658, −4.06289763526495944216964580084, −3.47280229940645882563311363422, −3.04421093520902745252441482350, −2.45003777023784668631357170395, −2.32795393932379781245519563327, −1.24999027785414522844343316450, −0.822128709153847757450929443586, 0.822128709153847757450929443586, 1.24999027785414522844343316450, 2.32795393932379781245519563327, 2.45003777023784668631357170395, 3.04421093520902745252441482350, 3.47280229940645882563311363422, 4.06289763526495944216964580084, 4.29666128466038975278772245658, 4.86345975302589407860331433156, 5.14738887025707870184973032707, 5.69059916047118335369982586535, 5.71953682293020473232997294757, 6.45455863470615685828068501095, 6.66757177527337767734633191359, 7.19989190130707047104776269913, 7.66560285481341894954541045845, 7.943267884736368674291763708879, 8.394723335542688423890482660872, 8.572417015715651033150574995106, 8.735912427785060027200071700491

Graph of the $Z$-function along the critical line