Properties

Degree $2$
Conductor $2352$
Sign $1$
Motivic weight $3$
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  − 3·3-s + 11.4·5-s + 9·9-s + 52.5·11-s − 5.48·13-s − 34.3·15-s + 85.3·17-s + 110.·19-s + 209.·23-s + 5.99·25-s − 27·27-s − 132.·29-s + 49.3·31-s − 157.·33-s + 160.·37-s + 16.4·39-s + 138.·41-s + 365.·43-s + 103.·45-s − 131.·47-s − 256.·51-s − 561.·53-s + 601.·55-s − 331.·57-s + 436.·59-s − 291.·61-s − 62.7·65-s + ⋯
L(s)  = 1  − 0.577·3-s + 1.02·5-s + 0.333·9-s + 1.44·11-s − 0.116·13-s − 0.591·15-s + 1.21·17-s + 1.33·19-s + 1.89·23-s + 0.0479·25-s − 0.192·27-s − 0.850·29-s + 0.285·31-s − 0.832·33-s + 0.712·37-s + 0.0675·39-s + 0.526·41-s + 1.29·43-s + 0.341·45-s − 0.407·47-s − 0.703·51-s − 1.45·53-s + 1.47·55-s − 0.771·57-s + 0.962·59-s − 0.612·61-s − 0.119·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2352 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2352 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2352\)    =    \(2^{4} \cdot 3 \cdot 7^{2}\)
Sign: $1$
Motivic weight: \(3\)
Character: $\chi_{2352} (1, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2352,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(3.162154822\)
\(L(\frac12)\) \(\approx\) \(3.162154822\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + 3T \)
7 \( 1 \)
good5 \( 1 - 11.4T + 125T^{2} \)
11 \( 1 - 52.5T + 1.33e3T^{2} \)
13 \( 1 + 5.48T + 2.19e3T^{2} \)
17 \( 1 - 85.3T + 4.91e3T^{2} \)
19 \( 1 - 110.T + 6.85e3T^{2} \)
23 \( 1 - 209.T + 1.21e4T^{2} \)
29 \( 1 + 132.T + 2.43e4T^{2} \)
31 \( 1 - 49.3T + 2.97e4T^{2} \)
37 \( 1 - 160.T + 5.06e4T^{2} \)
41 \( 1 - 138.T + 6.89e4T^{2} \)
43 \( 1 - 365.T + 7.95e4T^{2} \)
47 \( 1 + 131.T + 1.03e5T^{2} \)
53 \( 1 + 561.T + 1.48e5T^{2} \)
59 \( 1 - 436.T + 2.05e5T^{2} \)
61 \( 1 + 291.T + 2.26e5T^{2} \)
67 \( 1 - 593.T + 3.00e5T^{2} \)
71 \( 1 + 775.T + 3.57e5T^{2} \)
73 \( 1 - 330.T + 3.89e5T^{2} \)
79 \( 1 + 243.T + 4.93e5T^{2} \)
83 \( 1 + 332.T + 5.71e5T^{2} \)
89 \( 1 + 979.T + 7.04e5T^{2} \)
97 \( 1 - 466.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.898658334881833363066144549784, −7.65763216130968636915481048828, −7.02762485092594150018477986912, −6.15641393488103979745387859545, −5.60377573751039686331580395602, −4.85696469266478646857803304609, −3.75959851501576893486198366745, −2.82078673695492735060326749381, −1.46916245052952995455567339001, −0.942970035270922539394652223855, 0.942970035270922539394652223855, 1.46916245052952995455567339001, 2.82078673695492735060326749381, 3.75959851501576893486198366745, 4.85696469266478646857803304609, 5.60377573751039686331580395602, 6.15641393488103979745387859545, 7.02762485092594150018477986912, 7.65763216130968636915481048828, 8.898658334881833363066144549784

Graph of the $Z$-function along the critical line