Properties

Label 2-2352-1.1-c3-0-56
Degree $2$
Conductor $2352$
Sign $1$
Analytic cond. $138.772$
Root an. cond. $11.7801$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·3-s + 5.56·5-s + 9·9-s + 13.9·11-s + 38.6·13-s + 16.6·15-s + 43.4·17-s + 109.·19-s + 74.8·23-s − 94.0·25-s + 27·27-s − 72.3·29-s − 64.0·31-s + 41.7·33-s + 188.·37-s + 116.·39-s − 24.7·41-s + 243.·43-s + 50.0·45-s + 620.·47-s + 130.·51-s − 287.·53-s + 77.4·55-s + 327.·57-s − 525.·59-s − 383.·61-s + 215.·65-s + ⋯
L(s)  = 1  + 0.577·3-s + 0.497·5-s + 0.333·9-s + 0.381·11-s + 0.825·13-s + 0.287·15-s + 0.620·17-s + 1.31·19-s + 0.678·23-s − 0.752·25-s + 0.192·27-s − 0.463·29-s − 0.371·31-s + 0.220·33-s + 0.838·37-s + 0.476·39-s − 0.0944·41-s + 0.864·43-s + 0.165·45-s + 1.92·47-s + 0.358·51-s − 0.745·53-s + 0.189·55-s + 0.760·57-s − 1.15·59-s − 0.804·61-s + 0.410·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2352 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2352 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2352\)    =    \(2^{4} \cdot 3 \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(138.772\)
Root analytic conductor: \(11.7801\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2352,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(3.880414961\)
\(L(\frac12)\) \(\approx\) \(3.880414961\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - 3T \)
7 \( 1 \)
good5 \( 1 - 5.56T + 125T^{2} \)
11 \( 1 - 13.9T + 1.33e3T^{2} \)
13 \( 1 - 38.6T + 2.19e3T^{2} \)
17 \( 1 - 43.4T + 4.91e3T^{2} \)
19 \( 1 - 109.T + 6.85e3T^{2} \)
23 \( 1 - 74.8T + 1.21e4T^{2} \)
29 \( 1 + 72.3T + 2.43e4T^{2} \)
31 \( 1 + 64.0T + 2.97e4T^{2} \)
37 \( 1 - 188.T + 5.06e4T^{2} \)
41 \( 1 + 24.7T + 6.89e4T^{2} \)
43 \( 1 - 243.T + 7.95e4T^{2} \)
47 \( 1 - 620.T + 1.03e5T^{2} \)
53 \( 1 + 287.T + 1.48e5T^{2} \)
59 \( 1 + 525.T + 2.05e5T^{2} \)
61 \( 1 + 383.T + 2.26e5T^{2} \)
67 \( 1 + 198.T + 3.00e5T^{2} \)
71 \( 1 + 785.T + 3.57e5T^{2} \)
73 \( 1 + 331.T + 3.89e5T^{2} \)
79 \( 1 + 437.T + 4.93e5T^{2} \)
83 \( 1 + 241.T + 5.71e5T^{2} \)
89 \( 1 - 1.58e3T + 7.04e5T^{2} \)
97 \( 1 - 79.2T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.877311926556311718157585216342, −7.69303512813081196216099799400, −7.37616857535695739731354432730, −6.14231053055773284935287291528, −5.67258523172997287200256595533, −4.56442995314931697813478200805, −3.61825740202547922492559899269, −2.90005117890120903478917245731, −1.74249318066661409041432220034, −0.912029186720007407272693273454, 0.912029186720007407272693273454, 1.74249318066661409041432220034, 2.90005117890120903478917245731, 3.61825740202547922492559899269, 4.56442995314931697813478200805, 5.67258523172997287200256595533, 6.14231053055773284935287291528, 7.37616857535695739731354432730, 7.69303512813081196216099799400, 8.877311926556311718157585216342

Graph of the $Z$-function along the critical line