Properties

Label 4-2352e2-1.1-c3e2-0-5
Degree $4$
Conductor $5531904$
Sign $1$
Analytic cond. $19257.8$
Root an. cond. $11.7801$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 6·3-s − 3·5-s + 27·9-s + 51·11-s + 61·13-s − 18·15-s + 24·17-s − 169·19-s + 192·23-s − 115·25-s + 108·27-s − 39·29-s + 92·31-s + 306·33-s − 173·37-s + 366·39-s + 174·41-s + 497·43-s − 81·45-s − 180·47-s + 144·51-s + 285·53-s − 153·55-s − 1.01e3·57-s + 1.26e3·59-s + 328·61-s − 183·65-s + ⋯
L(s)  = 1  + 1.15·3-s − 0.268·5-s + 9-s + 1.39·11-s + 1.30·13-s − 0.309·15-s + 0.342·17-s − 2.04·19-s + 1.74·23-s − 0.919·25-s + 0.769·27-s − 0.249·29-s + 0.533·31-s + 1.61·33-s − 0.768·37-s + 1.50·39-s + 0.662·41-s + 1.76·43-s − 0.268·45-s − 0.558·47-s + 0.395·51-s + 0.738·53-s − 0.375·55-s − 2.35·57-s + 2.80·59-s + 0.688·61-s − 0.349·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5531904 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5531904 ^{s/2} \, \Gamma_{\C}(s+3/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(5531904\)    =    \(2^{8} \cdot 3^{2} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(19257.8\)
Root analytic conductor: \(11.7801\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 5531904,\ (\ :3/2, 3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(9.334891853\)
\(L(\frac12)\) \(\approx\) \(9.334891853\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_1$ \( ( 1 - p T )^{2} \)
7 \( 1 \)
good5$D_{4}$ \( 1 + 3 T + 124 T^{2} + 3 p^{3} T^{3} + p^{6} T^{4} \)
11$D_{4}$ \( 1 - 51 T + 3184 T^{2} - 51 p^{3} T^{3} + p^{6} T^{4} \)
13$D_{4}$ \( 1 - 61 T + 2118 T^{2} - 61 p^{3} T^{3} + p^{6} T^{4} \)
17$D_{4}$ \( 1 - 24 T + 1762 T^{2} - 24 p^{3} T^{3} + p^{6} T^{4} \)
19$D_{4}$ \( 1 + 169 T + 20730 T^{2} + 169 p^{3} T^{3} + p^{6} T^{4} \)
23$C_2$ \( ( 1 - 96 T + p^{3} T^{2} )^{2} \)
29$D_{4}$ \( 1 + 39 T + 12094 T^{2} + 39 p^{3} T^{3} + p^{6} T^{4} \)
31$D_{4}$ \( 1 - 92 T + 48873 T^{2} - 92 p^{3} T^{3} + p^{6} T^{4} \)
37$D_{4}$ \( 1 + 173 T + 62490 T^{2} + 173 p^{3} T^{3} + p^{6} T^{4} \)
41$D_{4}$ \( 1 - 174 T - 2846 T^{2} - 174 p^{3} T^{3} + p^{6} T^{4} \)
43$D_{4}$ \( 1 - 497 T + 174468 T^{2} - 497 p^{3} T^{3} + p^{6} T^{4} \)
47$D_{4}$ \( 1 + 180 T + 182914 T^{2} + 180 p^{3} T^{3} + p^{6} T^{4} \)
53$D_{4}$ \( 1 - 285 T + 224566 T^{2} - 285 p^{3} T^{3} + p^{6} T^{4} \)
59$D_{4}$ \( 1 - 1269 T + 13766 p T^{2} - 1269 p^{3} T^{3} + p^{6} T^{4} \)
61$D_{4}$ \( 1 - 328 T + 314646 T^{2} - 328 p^{3} T^{3} + p^{6} T^{4} \)
67$D_{4}$ \( 1 - 875 T + 782544 T^{2} - 875 p^{3} T^{3} + p^{6} T^{4} \)
71$D_{4}$ \( 1 - 1404 T + 1077298 T^{2} - 1404 p^{3} T^{3} + p^{6} T^{4} \)
73$D_{4}$ \( 1 + 1361 T + 1184556 T^{2} + 1361 p^{3} T^{3} + p^{6} T^{4} \)
79$D_{4}$ \( 1 - 182 T + 992307 T^{2} - 182 p^{3} T^{3} + p^{6} T^{4} \)
83$D_{4}$ \( 1 - 399 T + 946240 T^{2} - 399 p^{3} T^{3} + p^{6} T^{4} \)
89$D_{4}$ \( 1 - 822 T + 1516786 T^{2} - 822 p^{3} T^{3} + p^{6} T^{4} \)
97$D_{4}$ \( 1 - 841 T + 1945608 T^{2} - 841 p^{3} T^{3} + p^{6} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.874499298812786358990906812186, −8.447559572304077351751187363385, −8.115870360959972356113883825383, −7.938607024814203285967374030786, −7.15930808586014250450550888005, −6.97965011952350634833479983560, −6.45009285383483208726035701550, −6.44837626771959804191830795619, −5.53954422702416709482690543584, −5.49365689469031827991917415769, −4.59439271856733002744055599031, −4.23762738180793308815101525197, −3.78402675770221741379897159764, −3.77336641736451456791802480833, −3.13405290343870481724624930628, −2.52127845396631951456084097280, −2.07648689982123181363826727206, −1.64441408293455628944193370202, −0.78321511856135708691518449330, −0.77560998785981849426950730511, 0.77560998785981849426950730511, 0.78321511856135708691518449330, 1.64441408293455628944193370202, 2.07648689982123181363826727206, 2.52127845396631951456084097280, 3.13405290343870481724624930628, 3.77336641736451456791802480833, 3.78402675770221741379897159764, 4.23762738180793308815101525197, 4.59439271856733002744055599031, 5.49365689469031827991917415769, 5.53954422702416709482690543584, 6.44837626771959804191830795619, 6.45009285383483208726035701550, 6.97965011952350634833479983560, 7.15930808586014250450550888005, 7.938607024814203285967374030786, 8.115870360959972356113883825383, 8.447559572304077351751187363385, 8.874499298812786358990906812186

Graph of the $Z$-function along the critical line