L(s) = 1 | + 3·3-s − 20.3·5-s + 9·9-s + 30.9·11-s − 50.6·13-s − 60.9·15-s + 102.·17-s − 61.2·19-s − 148.·23-s + 287.·25-s + 27·27-s + 159.·29-s − 121.·31-s + 92.7·33-s − 357.·37-s − 151.·39-s − 466.·41-s + 185.·43-s − 182.·45-s − 131.·47-s + 308.·51-s + 200.·53-s − 627.·55-s − 183.·57-s − 591.·59-s − 70.5·61-s + 1.02e3·65-s + ⋯ |
L(s) = 1 | + 0.577·3-s − 1.81·5-s + 0.333·9-s + 0.847·11-s − 1.07·13-s − 1.04·15-s + 1.46·17-s − 0.739·19-s − 1.34·23-s + 2.29·25-s + 0.192·27-s + 1.01·29-s − 0.702·31-s + 0.489·33-s − 1.59·37-s − 0.623·39-s − 1.77·41-s + 0.658·43-s − 0.605·45-s − 0.407·47-s + 0.846·51-s + 0.518·53-s − 1.53·55-s − 0.426·57-s − 1.30·59-s − 0.148·61-s + 1.96·65-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2352 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2352 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(1.315974757\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.315974757\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 - 3T \) |
| 7 | \( 1 \) |
good | 5 | \( 1 + 20.3T + 125T^{2} \) |
| 11 | \( 1 - 30.9T + 1.33e3T^{2} \) |
| 13 | \( 1 + 50.6T + 2.19e3T^{2} \) |
| 17 | \( 1 - 102.T + 4.91e3T^{2} \) |
| 19 | \( 1 + 61.2T + 6.85e3T^{2} \) |
| 23 | \( 1 + 148.T + 1.21e4T^{2} \) |
| 29 | \( 1 - 159.T + 2.43e4T^{2} \) |
| 31 | \( 1 + 121.T + 2.97e4T^{2} \) |
| 37 | \( 1 + 357.T + 5.06e4T^{2} \) |
| 41 | \( 1 + 466.T + 6.89e4T^{2} \) |
| 43 | \( 1 - 185.T + 7.95e4T^{2} \) |
| 47 | \( 1 + 131.T + 1.03e5T^{2} \) |
| 53 | \( 1 - 200.T + 1.48e5T^{2} \) |
| 59 | \( 1 + 591.T + 2.05e5T^{2} \) |
| 61 | \( 1 + 70.5T + 2.26e5T^{2} \) |
| 67 | \( 1 - 643.T + 3.00e5T^{2} \) |
| 71 | \( 1 - 522.T + 3.57e5T^{2} \) |
| 73 | \( 1 - 576.T + 3.89e5T^{2} \) |
| 79 | \( 1 + 280.T + 4.93e5T^{2} \) |
| 83 | \( 1 + 557.T + 5.71e5T^{2} \) |
| 89 | \( 1 - 1.22e3T + 7.04e5T^{2} \) |
| 97 | \( 1 + 65.0T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.306989345462196982494481588068, −8.058125748457096858027425184698, −7.20771883589076009047012964608, −6.64941730388337690770852370244, −5.28959162392980138117898220123, −4.39299688390228512666611454646, −3.72097414335759003982034198056, −3.11133454528342087656805183134, −1.79623628339182733818883260093, −0.49064354949624255040392876559,
0.49064354949624255040392876559, 1.79623628339182733818883260093, 3.11133454528342087656805183134, 3.72097414335759003982034198056, 4.39299688390228512666611454646, 5.28959162392980138117898220123, 6.64941730388337690770852370244, 7.20771883589076009047012964608, 8.058125748457096858027425184698, 8.306989345462196982494481588068