Properties

Degree $2$
Conductor $2352$
Sign $1$
Motivic weight $3$
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + 3·3-s − 20.3·5-s + 9·9-s + 30.9·11-s − 50.6·13-s − 60.9·15-s + 102.·17-s − 61.2·19-s − 148.·23-s + 287.·25-s + 27·27-s + 159.·29-s − 121.·31-s + 92.7·33-s − 357.·37-s − 151.·39-s − 466.·41-s + 185.·43-s − 182.·45-s − 131.·47-s + 308.·51-s + 200.·53-s − 627.·55-s − 183.·57-s − 591.·59-s − 70.5·61-s + 1.02e3·65-s + ⋯
L(s)  = 1  + 0.577·3-s − 1.81·5-s + 0.333·9-s + 0.847·11-s − 1.07·13-s − 1.04·15-s + 1.46·17-s − 0.739·19-s − 1.34·23-s + 2.29·25-s + 0.192·27-s + 1.01·29-s − 0.702·31-s + 0.489·33-s − 1.59·37-s − 0.623·39-s − 1.77·41-s + 0.658·43-s − 0.605·45-s − 0.407·47-s + 0.846·51-s + 0.518·53-s − 1.53·55-s − 0.426·57-s − 1.30·59-s − 0.148·61-s + 1.96·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2352 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2352 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2352\)    =    \(2^{4} \cdot 3 \cdot 7^{2}\)
Sign: $1$
Motivic weight: \(3\)
Character: $\chi_{2352} (1, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2352,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(1.315974757\)
\(L(\frac12)\) \(\approx\) \(1.315974757\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - 3T \)
7 \( 1 \)
good5 \( 1 + 20.3T + 125T^{2} \)
11 \( 1 - 30.9T + 1.33e3T^{2} \)
13 \( 1 + 50.6T + 2.19e3T^{2} \)
17 \( 1 - 102.T + 4.91e3T^{2} \)
19 \( 1 + 61.2T + 6.85e3T^{2} \)
23 \( 1 + 148.T + 1.21e4T^{2} \)
29 \( 1 - 159.T + 2.43e4T^{2} \)
31 \( 1 + 121.T + 2.97e4T^{2} \)
37 \( 1 + 357.T + 5.06e4T^{2} \)
41 \( 1 + 466.T + 6.89e4T^{2} \)
43 \( 1 - 185.T + 7.95e4T^{2} \)
47 \( 1 + 131.T + 1.03e5T^{2} \)
53 \( 1 - 200.T + 1.48e5T^{2} \)
59 \( 1 + 591.T + 2.05e5T^{2} \)
61 \( 1 + 70.5T + 2.26e5T^{2} \)
67 \( 1 - 643.T + 3.00e5T^{2} \)
71 \( 1 - 522.T + 3.57e5T^{2} \)
73 \( 1 - 576.T + 3.89e5T^{2} \)
79 \( 1 + 280.T + 4.93e5T^{2} \)
83 \( 1 + 557.T + 5.71e5T^{2} \)
89 \( 1 - 1.22e3T + 7.04e5T^{2} \)
97 \( 1 + 65.0T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.306989345462196982494481588068, −8.058125748457096858027425184698, −7.20771883589076009047012964608, −6.64941730388337690770852370244, −5.28959162392980138117898220123, −4.39299688390228512666611454646, −3.72097414335759003982034198056, −3.11133454528342087656805183134, −1.79623628339182733818883260093, −0.49064354949624255040392876559, 0.49064354949624255040392876559, 1.79623628339182733818883260093, 3.11133454528342087656805183134, 3.72097414335759003982034198056, 4.39299688390228512666611454646, 5.28959162392980138117898220123, 6.64941730388337690770852370244, 7.20771883589076009047012964608, 8.058125748457096858027425184698, 8.306989345462196982494481588068

Graph of the $Z$-function along the critical line