Properties

Label 2-2352-1.1-c3-0-105
Degree $2$
Conductor $2352$
Sign $-1$
Analytic cond. $138.772$
Root an. cond. $11.7801$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·3-s + 20.8·5-s + 9·9-s − 15.1·11-s + 2.16·13-s − 62.5·15-s − 119.·17-s + 33.5·19-s − 0.651·23-s + 309.·25-s − 27·27-s − 163.·29-s + 223.·31-s + 45.4·33-s + 168.·37-s − 6.48·39-s − 323.·41-s − 221.·43-s + 187.·45-s − 508.·47-s + 358.·51-s − 176.·53-s − 315.·55-s − 100.·57-s − 454.·59-s + 38.6·61-s + 45.0·65-s + ⋯
L(s)  = 1  − 0.577·3-s + 1.86·5-s + 0.333·9-s − 0.415·11-s + 0.0461·13-s − 1.07·15-s − 1.70·17-s + 0.404·19-s − 0.00590·23-s + 2.47·25-s − 0.192·27-s − 1.04·29-s + 1.29·31-s + 0.239·33-s + 0.748·37-s − 0.0266·39-s − 1.23·41-s − 0.785·43-s + 0.621·45-s − 1.57·47-s + 0.983·51-s − 0.457·53-s − 0.774·55-s − 0.233·57-s − 1.00·59-s + 0.0811·61-s + 0.0860·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2352 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2352 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2352\)    =    \(2^{4} \cdot 3 \cdot 7^{2}\)
Sign: $-1$
Analytic conductor: \(138.772\)
Root analytic conductor: \(11.7801\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 2352,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + 3T \)
7 \( 1 \)
good5 \( 1 - 20.8T + 125T^{2} \)
11 \( 1 + 15.1T + 1.33e3T^{2} \)
13 \( 1 - 2.16T + 2.19e3T^{2} \)
17 \( 1 + 119.T + 4.91e3T^{2} \)
19 \( 1 - 33.5T + 6.85e3T^{2} \)
23 \( 1 + 0.651T + 1.21e4T^{2} \)
29 \( 1 + 163.T + 2.43e4T^{2} \)
31 \( 1 - 223.T + 2.97e4T^{2} \)
37 \( 1 - 168.T + 5.06e4T^{2} \)
41 \( 1 + 323.T + 6.89e4T^{2} \)
43 \( 1 + 221.T + 7.95e4T^{2} \)
47 \( 1 + 508.T + 1.03e5T^{2} \)
53 \( 1 + 176.T + 1.48e5T^{2} \)
59 \( 1 + 454.T + 2.05e5T^{2} \)
61 \( 1 - 38.6T + 2.26e5T^{2} \)
67 \( 1 + 141.T + 3.00e5T^{2} \)
71 \( 1 + 602.T + 3.57e5T^{2} \)
73 \( 1 + 1.10e3T + 3.89e5T^{2} \)
79 \( 1 - 116.T + 4.93e5T^{2} \)
83 \( 1 - 568.T + 5.71e5T^{2} \)
89 \( 1 + 383.T + 7.04e5T^{2} \)
97 \( 1 - 334.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.424827353068040964449807627030, −7.24875083185844534905649454190, −6.40154637487857140709595476471, −6.06318922165362113280339716025, −5.10109258685485670438334754747, −4.59619421857768661326195573090, −3.07798302522492776500398272227, −2.13553312412437488821494559131, −1.40626396190798642345558716108, 0, 1.40626396190798642345558716108, 2.13553312412437488821494559131, 3.07798302522492776500398272227, 4.59619421857768661326195573090, 5.10109258685485670438334754747, 6.06318922165362113280339716025, 6.40154637487857140709595476471, 7.24875083185844534905649454190, 8.424827353068040964449807627030

Graph of the $Z$-function along the critical line